Psychometrika

, Volume 66, Issue 4, pp 563–575 | Cite as

Regression among factor scores

Articles

Abstract

Structural equation models with latent variables are sometimes estimated using an intuitive three-step approach, here denoted factor score regression. Consider a structural equation model composed of an explanatory latent variable and a response latent variable related by a structural parameter of scientific interest. In this simple example estimation of the structural parameter proceeds as follows: First, common factor models areseparately estimated for each latent variable. Second, factor scores areseparately assigned to each latent variable, based on the estimates. Third, ordinary linear regression analysis is performed among the factor scores producing an estimate for the structural parameter. We investigate the asymptotic and finite sample performance of different factor score regression methods for structural equation models with latent variables. It is demonstrated that the conventional approach to factor score regression performs very badly. Revised factor score regression, using Regression factor scores for the explanatory latent variables and Bartlett scores for the response latent variables, produces consistent estimators for all parameters.

Key words

regression factor scores structural equation models latent variables factor score regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aptech Systems. (1992).GAUSS: System and graphics manual. Maple Valley, WA: Author.Google Scholar
  2. Bartholomew, D.J. (1981). Posterior analysis of the factor model.British Journal of Mathematical and Statistical Psychology, 34, 93–99.Google Scholar
  3. Bartlett, M.S. (1937). The statistical conception of mental factors.British Journal of Psychology, 28, 97–104.Google Scholar
  4. Bartlett, M.S. (1938). Methods of estimating mental factors.Nature, 141, 609–610.Google Scholar
  5. Bollen, K.A. (1989).Structural equations with latent variables. New York, NY: Wiley.Google Scholar
  6. Bollen, K.A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective.Psychological Bulletin, 110, 305–314.CrossRefGoogle Scholar
  7. Dwyer, P.S. (1937). The determination of the factor loadings of a given test from the known factor loadings of other tests.Psychometrika, 2, 173–178.CrossRefGoogle Scholar
  8. Furnam, A. (1994). Explaining health and illness: Lay beliefs on the nature of health.Personality and Individual Differences, 17, 455–466.Google Scholar
  9. Gorsuch, R.L. (1983).Factor analysis. Hillsdale, NJ: Erlbaum.Google Scholar
  10. Hauser, R.M., & Goldberger, A.S. (1971). The treatment of unobservable variables in path analysis. In H.L. Costner (Ed.),Sociological methodology 1971 (pp. 81–117). San Francisco, CA: Jossey-Bass.Google Scholar
  11. Holzinger, K.J., & Swineford, F. (1939).A study in factor analysis: The stability of a bifactor solution (Supplementary Educational Monograph No. 48). Chicago, IL: University of Chicago Press.Google Scholar
  12. Iwata, S. (1992). Errors-in-variables regression using estimated latent variables.Econometric Reviews, 11, 195–200.Google Scholar
  13. Jöreskog, K.G. (1973). A general method for estimating a linear structural equation system. In A.S. Goldberger & O.D. Duncan (Eds.),Structural equation models in the social sciences (pp. 85–112). New York, NY: Seminar Press.Google Scholar
  14. Jöreskog, K.G. (1977). Structural equation models in the social sciences: Specification, estimation and testing. In P.R. Krishnaiah (Ed.),Applications of Statistics (pp. 265–286). Amsterdam: North-Holland.Google Scholar
  15. Jöreskog, K.G., & Sörbom, D. (1989).LISREL7: A guide to the program and applications. Chicago, IL: SPSS.Google Scholar
  16. Kim, J.-O., & Mueller, C.W. (1978).Factor analysis: Statistical methods and practical issues (Sage university paper series on quantitative applications in the social sciences, No. 07-014). Beverly Hills, CA: Sage.Google Scholar
  17. Krijnen, W.P., Wansbeek, T.J., & ten Berge, J.M.F. (1996). Best linear predictors for factor scores.Communications in Statistics—Theory and Methods, 25, 3013–3025.Google Scholar
  18. Lastovicka, J.L., & Thamodaran, K. (1991). Common factor score estimates in multiple regression problems.Journal of Marketing Research, 28, 105–112.Google Scholar
  19. Lavik, N.J., Hauff, E., Skrondal, A., & Solberg, O. (1996). Mental disorder among refugees and the impact of persecution and exile: Some findings from an outpatient population.British Journal of Psychiatry, 169, 726–732.Google Scholar
  20. Lawley, D.N., & Maxwell, A.E. (1971).Factor analysis as a statistical method. London: Butterworths.Google Scholar
  21. Mardia, K.V., Kent, J.T., & Bibby, J.M. (1979).Multivariate analysis. New York, NY: Academic.Google Scholar
  22. McDonald, R.P., & Burr, E.J. (1967). A comparison of four methods of constructing factor scores.Psychometrika, 32, 381–401.Google Scholar
  23. Mira, M., Abraham, S., McNeil, D., Vizzard, J., Macaskill, P., Fraser, I., & Llewellyn-Jones, D. (1995). The interrelationship of premenstrual symptoms.Psychological Medicine, 25, 947–955.PubMedGoogle Scholar
  24. Rosen, L.N., Durand, D., Westhuis, D.J., & Teitelbaum, J.M. (1995). Marital adjustment of army spouses one year after Operation Desert Storm.Journal of Applied Social Psychology, 25, 677–692.Google Scholar
  25. Schoenberg, R., & Arminger, G. (1990).LINCS2.0. Kent, WA: RJS Software.Google Scholar
  26. Skrondal, A. (2000). Design and analysis of Monte Carlo experiments: Attacking the conventional wisdom.Multivariate Behavioral Research, 35, 137–167.CrossRefGoogle Scholar
  27. ten Berge, J.M.F. (1983). On Green's best linear composites with a specified structure, and oblique estimates of factor scores.Psychometrika, 48, 371–375.Google Scholar
  28. ten Berge, J.M.F., Krijnen, W.P., Wansbeek, T.J., & Shapiro, A. (1999). Some new results on correlation-preserving factor scores prediction methods.Linear Algebra and its Applications, 289, 311–318.Google Scholar
  29. Thomson, G.H. (1934). The meaning of i in the estimate of g.British Journal of Psychology, 25, 92–99.Google Scholar
  30. Thurstone, L.L. (1935).The vectors of mind. Chicago, IL: University of Chicago Press.Google Scholar
  31. Tucker, L.R. (1971). Relations of factor score estimates to their use.Psychometrika, 36, 427–436.CrossRefGoogle Scholar
  32. Zellner, A. (1970). Estimation of regression relationships containing unobservable variables.International Economic Review, 11, 441–454.Google Scholar

Copyright information

© The Psychometric Society 2001

Authors and Affiliations

  1. 1.Department of EpidemiologyNational Institute of Public HealthOsloNorway
  2. 2.Section of Medical StatisticsUniversity of OsloNorway

Personalised recommendations