Abstract
Formulas for the asymptotic biases of the parameter estimates in structural equation models are provided in the case of the Wishart maximum likelihood estimation for normally and nonnormally distributed variables. When multivariate normality is satisfied, considerable simplification is obtained for the models of unstandardized variables. Formulas for the models of standardized variables are also provided. Numerical examples with Monte Carlo simulations in factor analysis show the accuracy of the formulas and suggest the asymptotic robustness of the asymptotic biases with normality assumption against nonnormal data. Some relationships between the asymptotic biases and other asymptotic values are discussed.
Similar content being viewed by others
References
Anderson, T.W. (1984).An Introduction to Multivariate Statistical Analysis (2nd ed.). New York: Wiley.
Anderson, T.W. (1987). Multivariate linear relations. In T. Pukkila & S. Puntanen (Eds.),Proceedings of the Second International Conference in Statistics (pp. 9–36). Tampere, Finland: University of Tampere.
Anderson, T.W. (1989). Linear latent variable models and covariance structures.Journal of Econometrics, 41, 91–119.
Anderson, T.W., & Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions.The Annals of Statistics, 16, 759–771.
Archer, C.O., & Jennrich, R.I. (1973). Standard errors for rotated factor loadings.Psychometrika, 38, 581–592.
Bentler, P.M., & Dijkstra, T. (1985). Efficient estimation via linearization in structural models. In P.R. Krishnaiah (Ed.),Multivariate Analysis—VI (pp. 9–42). New York: Elsevier.
Browne, M.W. (1974). Generalized least squares estimators in the analysis of covariance structures.South African Statistical Journal, 8, 1–24. Reprinted in D.J. Aigner & A.S. Goldberger (Eds.),Latent Variables in Socioeconomic Models (pp. 205–226). Amsterdam: North Holland, 1977.
Browne, M.W. (1987). Robustness in statistical inference in factor analysis and related models.Biometrika, 74, 375–384.
Browne, M.W., & Shapiro, A. (1986). The asymptotic covariance matrix of sample correlation coefficients under general conditions.Linear Algebra and Its Applications, 82, 169–176.
Browne, M.W., & Shapiro, A. (1988). Robustness of normal theory methods in the analysis of linear latent variable models.British Journal of Mathematical and Statistical Psychology, 41, 193–208.
Emmett, W.G. (1949). Factor analysis by Lawley's method of maximum likelihood.British Journal of Psychology, Statistical Section, 2, 90–97.
Harman, H.H. (1976).Modern Factor Analysis (3rd ed.). Chicago, IL: University of Chicago Press.
Hayashi, K., & Yung, Y.F. (1999). Standard errors for the class of orthomax-rotated factor loadings: Some matrix results.Psychometrika, 64, 451–460.
Ichikawa, M., & Konishi, S. (2002). Asymptotic expansions and bootstrap approximations in factor analysis.Journal of Multivariate Analysis, 81, 47–66.
Ihara, M. (1985). Asymptotic bias of estimators of the uniqueness in factor analysis.Mathematica Japonica, 30, 885–889.
Jennrich, R.I. (1973). Standard errors for obliquely rotated factor loadings.Psychometrika, 38, 593–604.
Jennrich, R.I. (1974). Simplified formulae for standard errors in maximum likelihood factor analysis.British Journal of Mathematical and Statistical Psychology, 27, 122–131.
Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor analysis.Psychometrika, 34, 183–202.
Jöreskog, K.G. (1978). Structural analysis of covariance and correlation matrices.Psychometrika, 43, 443–477.
Jöreskog, K.G., Sörbom, D., du Toit, S., & du Toit, M. (1999).LISREL 8: New Statistical Features. Chicago, IL: Scientific Software.
Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis.Psychometrika, 23, 187–200.
Lawley, D.N., & Maxwell, A.E. (1971).Factor Analysis as a Statistical Method (2nd ed.). London: Butterworths.
Magnus, J.R., & Neudecker, H. (1999).Matrix Differential Calculus with Applications in Statistics and Econometrics (revised ed.). New York: Wiley.
Nel, D.G. (1985). A matrix derivation of the asymptotic covariance matrix of sample correlation coefficients.Linear Algebra and Its Applications, 67, 137–145.
Neudecker, H. (1996). The asymptotic variance matrices of the sample correlation matrix in elliptical and normal situations and their proportionality.Linear Algebra and Its Applications, 237–238, 127–132.
Neudecker, H., & Wesselman, A.M. (1990). The asymptotic variance matrix of the sample correlation matrix.Linear Algebra and Its Applications, 127, 589–599.
Ogasawara, H. (1998). Standard errors for rotation matrices with an application to the promax solution.British Journal of Mathematical and Statistical Psychology, 51, 163–178.
Ogasawara, H. (1999). Standard errors for procrustes solutions.Japanese Psychological Research, 41, 121–130.
Ogasawara, H. (2000a). On the standard errors of rotated factor loadings with weights for observed variables.Behaviormetrika, 27, 1–14.
Ogasawara, H. (2000b). Standard errors for the Harris-Kaiser Case II orthoblique solution.Behaviormetrika, 27, 89–103.
Ogasawara, H. (2002). Asymptotic standard errors of estimated standard errors in structural equation modeling.British Journal of Mathematical and Statistical Psychology, 55, 213–229.
Olkin, I., & Pratt, J.W. (1958). Unbiased estimation of certain correlation coefficients.Annals of Mathematical Statistics, 29, 201–211.
Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified approach.Psychometrika, 54, 131–151.
Satorra, A. (2002). Asymptotic robustness in multiple group linear-latent variable models.Econometric Theory, 18, 297–312.
Satorra, A., & Bentler, P.M. (1990). Model conditions for asymptotic robustness in the analysis of linear relations.Computational Statistics and Data Analysis, 10, 235–249.
Shapiro, A. (1983). Asymptotic distribution theory in the analysis of covariance structures (A unified approach).South African Statistical Journal, 17, 33–81
Silvey, S.D. (1975).Statistical Inference. London: Chapman & Hall.
Siotani, M., Hayakawa, T., & Fujikoshi, Y. (1985).Modern Multivariate Statistical Analysis: A Graduate Course and Handbook. Columbus, OH: American Sciences Press.
Steiger, J.H., & Hakstian, A.R. (1982). The asymptotic distribution of elements of a correlation matrix: Theory and application.British Journal of Mathematical and Statistical Psychology, 35, 208–215.
Yuan, K.-H., & Bentler, P.M. (2000). On equivalence and invariance of standard errors in three exploratory factor models.Psychometrika, 65, 121–133.
Yung, Y.-F., & Hayashi, K. (2001). A computationally efficient method for obtaining standard error estimates for the promax and related solutions.British Journal of Mathematical and Statistical Psychology, 54, 125–138.
Author information
Authors and Affiliations
Corresponding author
Additional information
The author is indebted to the editor and anonymous reviewers for their comments, corrections, and suggestions on this paper, and to Yutaka Kano for discussion on biases.
Rights and permissions
About this article
Cite this article
Ogasawara, H. Asymptotic biases in exploratory factor analysis and structural equation modeling. Psychometrika 69, 235–256 (2004). https://doi.org/10.1007/BF02295942
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02295942


