Skip to main content
Log in

Asymptotic biases in exploratory factor analysis and structural equation modeling

  • Theory And Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Formulas for the asymptotic biases of the parameter estimates in structural equation models are provided in the case of the Wishart maximum likelihood estimation for normally and nonnormally distributed variables. When multivariate normality is satisfied, considerable simplification is obtained for the models of unstandardized variables. Formulas for the models of standardized variables are also provided. Numerical examples with Monte Carlo simulations in factor analysis show the accuracy of the formulas and suggest the asymptotic robustness of the asymptotic biases with normality assumption against nonnormal data. Some relationships between the asymptotic biases and other asymptotic values are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T.W. (1984).An Introduction to Multivariate Statistical Analysis (2nd ed.). New York: Wiley.

    Google Scholar 

  • Anderson, T.W. (1987). Multivariate linear relations. In T. Pukkila & S. Puntanen (Eds.),Proceedings of the Second International Conference in Statistics (pp. 9–36). Tampere, Finland: University of Tampere.

    Google Scholar 

  • Anderson, T.W. (1989). Linear latent variable models and covariance structures.Journal of Econometrics, 41, 91–119.

    Google Scholar 

  • Anderson, T.W., & Amemiya, Y. (1988). The asymptotic normal distribution of estimators in factor analysis under general conditions.The Annals of Statistics, 16, 759–771.

    Google Scholar 

  • Archer, C.O., & Jennrich, R.I. (1973). Standard errors for rotated factor loadings.Psychometrika, 38, 581–592.

    Google Scholar 

  • Bentler, P.M., & Dijkstra, T. (1985). Efficient estimation via linearization in structural models. In P.R. Krishnaiah (Ed.),Multivariate Analysis—VI (pp. 9–42). New York: Elsevier.

    Google Scholar 

  • Browne, M.W. (1974). Generalized least squares estimators in the analysis of covariance structures.South African Statistical Journal, 8, 1–24. Reprinted in D.J. Aigner & A.S. Goldberger (Eds.),Latent Variables in Socioeconomic Models (pp. 205–226). Amsterdam: North Holland, 1977.

    Google Scholar 

  • Browne, M.W. (1987). Robustness in statistical inference in factor analysis and related models.Biometrika, 74, 375–384.

    Google Scholar 

  • Browne, M.W., & Shapiro, A. (1986). The asymptotic covariance matrix of sample correlation coefficients under general conditions.Linear Algebra and Its Applications, 82, 169–176.

    Google Scholar 

  • Browne, M.W., & Shapiro, A. (1988). Robustness of normal theory methods in the analysis of linear latent variable models.British Journal of Mathematical and Statistical Psychology, 41, 193–208.

    Google Scholar 

  • Emmett, W.G. (1949). Factor analysis by Lawley's method of maximum likelihood.British Journal of Psychology, Statistical Section, 2, 90–97.

    Google Scholar 

  • Harman, H.H. (1976).Modern Factor Analysis (3rd ed.). Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Hayashi, K., & Yung, Y.F. (1999). Standard errors for the class of orthomax-rotated factor loadings: Some matrix results.Psychometrika, 64, 451–460.

    Google Scholar 

  • Ichikawa, M., & Konishi, S. (2002). Asymptotic expansions and bootstrap approximations in factor analysis.Journal of Multivariate Analysis, 81, 47–66.

    Google Scholar 

  • Ihara, M. (1985). Asymptotic bias of estimators of the uniqueness in factor analysis.Mathematica Japonica, 30, 885–889.

    Google Scholar 

  • Jennrich, R.I. (1973). Standard errors for obliquely rotated factor loadings.Psychometrika, 38, 593–604.

    Google Scholar 

  • Jennrich, R.I. (1974). Simplified formulae for standard errors in maximum likelihood factor analysis.British Journal of Mathematical and Statistical Psychology, 27, 122–131.

    Google Scholar 

  • Jöreskog, K.G. (1969). A general approach to confirmatory maximum likelihood factor analysis.Psychometrika, 34, 183–202.

    Google Scholar 

  • Jöreskog, K.G. (1978). Structural analysis of covariance and correlation matrices.Psychometrika, 43, 443–477.

    Google Scholar 

  • Jöreskog, K.G., Sörbom, D., du Toit, S., & du Toit, M. (1999).LISREL 8: New Statistical Features. Chicago, IL: Scientific Software.

    Google Scholar 

  • Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis.Psychometrika, 23, 187–200.

    Google Scholar 

  • Lawley, D.N., & Maxwell, A.E. (1971).Factor Analysis as a Statistical Method (2nd ed.). London: Butterworths.

    Google Scholar 

  • Magnus, J.R., & Neudecker, H. (1999).Matrix Differential Calculus with Applications in Statistics and Econometrics (revised ed.). New York: Wiley.

    Google Scholar 

  • Nel, D.G. (1985). A matrix derivation of the asymptotic covariance matrix of sample correlation coefficients.Linear Algebra and Its Applications, 67, 137–145.

    Google Scholar 

  • Neudecker, H. (1996). The asymptotic variance matrices of the sample correlation matrix in elliptical and normal situations and their proportionality.Linear Algebra and Its Applications, 237–238, 127–132.

    Google Scholar 

  • Neudecker, H., & Wesselman, A.M. (1990). The asymptotic variance matrix of the sample correlation matrix.Linear Algebra and Its Applications, 127, 589–599.

    Google Scholar 

  • Ogasawara, H. (1998). Standard errors for rotation matrices with an application to the promax solution.British Journal of Mathematical and Statistical Psychology, 51, 163–178.

    Google Scholar 

  • Ogasawara, H. (1999). Standard errors for procrustes solutions.Japanese Psychological Research, 41, 121–130.

    Google Scholar 

  • Ogasawara, H. (2000a). On the standard errors of rotated factor loadings with weights for observed variables.Behaviormetrika, 27, 1–14.

    Google Scholar 

  • Ogasawara, H. (2000b). Standard errors for the Harris-Kaiser Case II orthoblique solution.Behaviormetrika, 27, 89–103.

    Google Scholar 

  • Ogasawara, H. (2002). Asymptotic standard errors of estimated standard errors in structural equation modeling.British Journal of Mathematical and Statistical Psychology, 55, 213–229.

    Google Scholar 

  • Olkin, I., & Pratt, J.W. (1958). Unbiased estimation of certain correlation coefficients.Annals of Mathematical Statistics, 29, 201–211.

    Google Scholar 

  • Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified approach.Psychometrika, 54, 131–151.

    Google Scholar 

  • Satorra, A. (2002). Asymptotic robustness in multiple group linear-latent variable models.Econometric Theory, 18, 297–312.

    Google Scholar 

  • Satorra, A., & Bentler, P.M. (1990). Model conditions for asymptotic robustness in the analysis of linear relations.Computational Statistics and Data Analysis, 10, 235–249.

    Google Scholar 

  • Shapiro, A. (1983). Asymptotic distribution theory in the analysis of covariance structures (A unified approach).South African Statistical Journal, 17, 33–81

    Google Scholar 

  • Silvey, S.D. (1975).Statistical Inference. London: Chapman & Hall.

    Google Scholar 

  • Siotani, M., Hayakawa, T., & Fujikoshi, Y. (1985).Modern Multivariate Statistical Analysis: A Graduate Course and Handbook. Columbus, OH: American Sciences Press.

    Google Scholar 

  • Steiger, J.H., & Hakstian, A.R. (1982). The asymptotic distribution of elements of a correlation matrix: Theory and application.British Journal of Mathematical and Statistical Psychology, 35, 208–215.

    Google Scholar 

  • Yuan, K.-H., & Bentler, P.M. (2000). On equivalence and invariance of standard errors in three exploratory factor models.Psychometrika, 65, 121–133.

    Google Scholar 

  • Yung, Y.-F., & Hayashi, K. (2001). A computationally efficient method for obtaining standard error estimates for the promax and related solutions.British Journal of Mathematical and Statistical Psychology, 54, 125–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Ogasawara.

Additional information

The author is indebted to the editor and anonymous reviewers for their comments, corrections, and suggestions on this paper, and to Yutaka Kano for discussion on biases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogasawara, H. Asymptotic biases in exploratory factor analysis and structural equation modeling. Psychometrika 69, 235–256 (2004). https://doi.org/10.1007/BF02295942

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02295942

Key words

Navigation