Skip to main content
Log in

Generalized multilevel structural equation modeling

  • Theory And Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent variables. The response model generalizes GLMMs to incorporate factor structures in addition to random intercepts and coefficients. As in GLMMs, the data can have an arbitrary number of levels and can be highly unbalanced with different numbers of lower-level units in the higher-level units and missing data. A wide range of response processes can be modeled including ordered and unordered categorical responses, counts, and responses of mixed types. The structural model is similar to the structural part of a SEM except that it may include latent and observed variables varying at different levels. For example, unit-level latent variables (factors or random coefficients) can be regressed on cluster-level latent variables. Special cases of this framework are explored and data from the British Social Attitudes Survey are used for illustration. Maximum likelihood estimation and empirical Bayes latent score prediction within the GLLAMM framework can be performed using adaptive quadrature in gllamm, a freely available program running in Stata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansari, A., & Jedidi, K. (2000). Bayesian factor analysis for multilevel binary observations.Psychometrika, 65, 475–496.

    Google Scholar 

  • Arminger, G., & Sobel, M. (1990). Pseudo maximum likelihood estimation of mean- and covariance structures with missing data.Journal of the American Statistical Association, 85, 195–203.

    Google Scholar 

  • Asparouhov, T., & Muthén, B.O. (2004). Full-information maximum-likelihood estimation of general two-level latent variable models. Draft.

  • Bollen, K.A. (1989).Structural Equations with Latent Variables. New York: Wiley.

    Google Scholar 

  • Böckenholt, U. (2001). Hierarchical modeling of paired comparison data.Psychological Methods, 6, 49–66.

    Google Scholar 

  • Carroll, R.J., Ruppert, D., & Stefanski, L.A. (1995).Measurement Error in Nonlinear Models. London: Chapman & Hall.

    Google Scholar 

  • Chou, C.-P., Bentler, P.M., & Pentz, M.A. (2000). A two-stage approach to multilevel structural equation models: application to longitudinal data. In T.D. Little, K.U. Schnabel, & J. Baumert (Eds.),Modeling Longitudinal and Multilevel Data (pp. 33–49). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Clayton, D. (1988). The analysis of event history data: a review of progress and outstanding problems.Statistics in Medicine, 7, 819–841.

    Google Scholar 

  • Clogg, C. C. (1995). Latent class models. In G. Arminger, C.C. Clogg, & M.E. Sobel (Eds.),Handbook of Statistical Modeling for the Social and Behavioral Sciences (pp. 311–359). New York: Plenum Press.

    Google Scholar 

  • Dohoo, I.R., Tillard, E., Stryhn, H., & Faye, B. (2001). The use of multilevel models to evaluate sources of variation in reproductive performance in dairy cattle.Preventive Veterinary Medicine, 50, 127–144.

    Google Scholar 

  • Fox, J.P. (2001).Multilevel IRT: A Bayesian Perspective on Estimating Parameters and Testing Statistical Hypotheses. Ph.D. thesis, University of Twente, Enschede.

    Google Scholar 

  • Fox, J.P., & Glas, C. A.W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling.Psychometrika, 66, 271–288.

    Google Scholar 

  • Fox, J.P., & Glas, C. A.W. (2003). Bayesian modeling of measurement error in predictor variables using item response theory.Psychometrika, 68, 169–191.

    Google Scholar 

  • Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalised least squares.Biometrika, 73, 43–56.

    Google Scholar 

  • Goldstein, H. (1995).Multilevel Statistical Models. London: Arnold.

    Google Scholar 

  • Goldstein, H., & Browne, W. (2002). Multilevel factor analysis modeling using Markov Chain Monte Carlo (MCMC) estimation. In G.A. Marcoulides & I. Moustaki (Eds.),Latent Variable and Latent Structure Models. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Goldstein, H., & McDonald, R.P. (1988). A general model for the analysis of multilevel data.Psychometrika, 53, 455–467.

    Google Scholar 

  • Hagenaars, J.A. (1988). Latent structure models with direct effects between indicators: local dependence models.Sociological Methods & Research, 16, 379–405.

    Google Scholar 

  • Harper, D. (1972). Local dependence latent structure models.Psychometrika, 37, 53–59.

    Google Scholar 

  • Heckman, J.J. (1979). Sample selection bias as a specification error.Econometrica, 47, 153–161.

    Google Scholar 

  • Heckman, J.J., & Singer, B. (1984). A method of minimizing the impact of distributional assumptions in econometric models for duration data.Econometrica, 52, 271–320.

    Google Scholar 

  • Hox, J. (2002).Multilevel Analysis: Techniques and Applications. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Jöreskog, K.G. (1971). Simultaneous factor analysis in several populations.Psychometrika, 36, 409–426.

    Google Scholar 

  • Jöreskog, K.G. (1973). A general method for estimating a linear structural equation system. In A.S. Goldberger & O.D. Duncan (Eds.),Structural Equation Models in the Social Sciences (pp. 85–112). New York: Seminar.

    Google Scholar 

  • Jöreskog, K.G. & Goldberger, A.S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable.Journal of the American Statistical Association, 70, 631–639.

    Google Scholar 

  • Jöreskog, K.G., & Sörbom, D. (1989).LISREL 7: A Guide to the Program and Applications. Chicago, IL: SPSS Publications.

    Google Scholar 

  • Knott, M., Albanese, M.T., & Galbraith, J.I. (1990). Scoring attitudes to abortion.The Statistician, 40, 217–223.

    Google Scholar 

  • Laird, N.M. (1978). Nonparametric maximum likelihood estimation of a mixing distribution.Journal of the American Statistical Association, 73, 805–811.

    Google Scholar 

  • Lee, S.-Y., & Shi, J.-Q. (2001). Maximum likelihood estimation of two-level latent variable models with mixed continuous and polytomous data.Biometrics, 57, 787–794.

    Google Scholar 

  • Lee, S.-Y., & Tsang, S.-Y. (1999). Constrained maximum likelihood estimation of two-level covariance structure models via EM type algorithms.Psychometrika, 64, 435–450.

    Google Scholar 

  • Lesaffre, E., & Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random-effects model: an example.Applied Statistics, 50, 325–335.

    Google Scholar 

  • Liang, J., & Bentler, P. M. (2003). An EM algorithm for fitting two-level structural equation models.Psychometrika, in press.

  • Linda, N.Y., Lee, S.-Y., & Poon, W.-Y. (1993). Covariance structure analysis with three level data.Computational Statistics & Data Analysis, 15, 159–178.

    Google Scholar 

  • Longford, N.T. (1993).Random Coefficient Models. Oxford: Oxford University Press.

    Google Scholar 

  • Longford, N.T., & Muthén, B.O. (1992). Factor analysis for clustered observations.Psychometrika, 57, 581–597.

    Google Scholar 

  • McArdle, J.J. (1986). Latent variable growth within behavior genetic models.Behavior Genetics, 16, 163–200.

    Google Scholar 

  • McDonald, R.P., & Goldstein, H. (1989). Balanced and unbalanced designs for linear structural relations in two-level data.British Journal of Mathematical and Statistical Psychology, 42, 215–232.

    Google Scholar 

  • Meredith, W. & Tisak, J. (1990). Latent curve analysis.Psychometrika, 55, 107–122.

    Google Scholar 

  • Muthén, B.O. (1984). A general structural equation model with dichotomous, ordered categorical and continuous latent indicators.Psychometrika, 49, 115–132.

    Google Scholar 

  • Muthén, B.O. (1985). A method for studying the homogeneity of test items with respect to other relevant variables.Journal of Educational Statistics, 10, 121–132.

    Google Scholar 

  • Muthén, B.O. (1989). Latent variable modeling in heterogeneous populations.Psychometrika, 54, 557–585.

    Google Scholar 

  • Muthén, B.O. (1994). Multilevel covariance structure analysis.Sociological Methods & Research, 22, 376–398.

    Google Scholar 

  • Muthén, B.O. (1997). Latent variable modeling of longitudinal and multilevel data. In A.E. Raftery (Ed.),Sociological Methodology 1997 (pp. 453–480). Cambridge, MA: Blackwell.

    Google Scholar 

  • Muthén, B.O. (2002). Beyond SEM: General latent variable modeling.Behaviormetrika, 29, 81–117.

    Google Scholar 

  • Muthén, L.K., & Muthén, B.O. (1998).Mplus User's Guide. Los Angeles, CA: Muthén & Muthén.

    Google Scholar 

  • Neale, M.C., & Cardon, L.R. (1992).Methodology for Genetic Studies of Twins and Families. London: Kluwer.

    Google Scholar 

  • Pickles, A., Pickering, K., Simonoff, E., Meyer, J., Silberg, J., & Maes, H. (1998). Genetic clocks and soft events: A twin model for pubertal development and other recalled sequences of developmental milestones.Behavior Genetics, 28, 243–253.

    Google Scholar 

  • Plummer, M., & Clayton, D. (1993). Measurement error in dietary assessment: an investigation using covariance structure models. Part II.Statistics in Medicine, 12, 937–948.

    Google Scholar 

  • Poon, W.-Y., & Lee, S.-Y. (1992). Maximum likelihood and generalized least squares analyses of two-level structural equation models.Statistics and Probability Letters, 14, 25–30.

    Google Scholar 

  • Rabe-Hesketh, S., & Pickles, A. (1999). Generalised linear latent and mixed models. In H. Friedl, A. Berghold & G. Kauermann (Eds.),Proceedings of the 14th International Workshop on Statistical Modeling (pp. 332–339). Graz, Austria.

  • Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2001a). GLLAMM: A general class of multilevel models and a Stata program.Multilevel Modelling Newsletter, 13, 17–23.

    Google Scholar 

  • Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2001b).GLLAMM Manual. Tech. rept. 2001/01. Department of Biostatistics and Computing, Institute of Psychiatry, King's College, University of London. Downloadable from http://www.gllamm.org.

  • Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2003). Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation.Statistical Modelling, 3, 215–232.

    Google Scholar 

  • Rabe-Hesketh, S., Pickles, A., & Taylor, C. (2000). sg129: Generalized linear latent and mixed models.Stata Technical Bulletin, 53, 47–57.

    Google Scholar 

  • Rabe-Hesketh, S., & Skrondal, A. (2001). Parameterization of multivariate random effects models for categorical data.Biometrics, 57, 1256–1264.

    Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2002). Reliable estimation of generalized linear mixed models using adaptive quadrature.The Stata Journal, 2, 1–21.

    Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2003). Maximum likelihood estimation of generalized linear models with covariate measurement error.The Stata Journal, 3, 386–411.

    Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects.Journal of Econometrics, in press.

  • Rabe-Hesketh, S., Toulopoulou, T., & Murray, R. (2001). Multilevel modeling of cognitive function in schizophrenic patients and their first degree relatives.Multivariate Behavioral Research, 36, 279–298.

    Google Scholar 

  • Rabe-Hesketh, S., Yang, S., & Pickles, A. (2001). Multilevel models for censored and latent responses.Statistical Methods in Medical Research, 10, 409–427.

    Google Scholar 

  • Rasbash, J., Browne, W., Goldstein, H., Yang, M., Plewis, I., Healy, M., Woodhouse, G., Draper, D., Langford, I., & Lewis, T. (2000).A User's Guide to MLwiN (second edition). London: Institute of Education, University of London.

    Google Scholar 

  • Raudenbush, S.W. (1995). Maximum likelihood estimation for unbalanced multilevel covariance structure models via the EM algorithm.British Journal of Mathematical and Statistical Psychology, 48, 359–370.

    Google Scholar 

  • Raudenbush, S.W., Bryk, A.S., Cheong, Y.F., & Congdon, R. (2000).HLM 5: Hierarchical Linear and Nonlinear Modeling. Lincolnwood, IL: Scientific Software International.

    Google Scholar 

  • Raudenbush, S.W., & Bryk, A.S. (2002).Hierarchical Linear Models: Applications and Data Analysis Methods. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Raudenbush, S.W., & Sampson, R. (1999a). Assessing direct and indirect effects in multilevel designs with latent variables.Sociological Methods & Research, 28, 123–153.

    Google Scholar 

  • Raudenbush, S.W., & Sampson, R. (1999b). Ecometrics: toward a science of assessing ecological settings, with application to the systematic social observation of neighborhoods. In P.V. Marsden (Ed.),Sociological Methodology 1999, vol. 29 (pp. 1–41). Oxford: Blackwell.

    Google Scholar 

  • Rijmen, F., Tuerlinckx, F., De Boeck, P., and Kuppens, P. (2003). A nonlinear mixed model framework for IRT models.Psychological Methods, 8, 185–205.

    Google Scholar 

  • Rindskopf, D. (1984). Using phantom and imaginary latent variables to parameterize constraints in linear structural models.Psychometrika, 49, 37–47.

    Google Scholar 

  • Skrondal, A., & Laake, P. (2001). Regression among factor scores.Psychometrika, 66, 563–576.

    Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2003a). Multilevel logistic regression for polytomous data and rankings.Psychometrika, 68, 267–287.

    Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2003b). Some applications of generalized linear latent and mixed models in epidemiology: Repeated measures, measurement error and multilevel modeling.Norwegian Journal of Epidemiology, 13, 265–278.

    Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2004a).Generalized latent variable modeling: Multilevel, longitudinal and structural equation models. Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2004b). Generalized linear latent and mixed models with composite links and exploded likelihoods. In A. Biggeri, E. Dreassi, C. Lagazio & M. Marchi (Eds.),Proceedings of the 19th International Workshop on Statistical Modeling (pp. 27–39). Florence, Italy: Firenze University Press.

    Google Scholar 

  • Skrondal, A., Rabe-Hesketh, S., & Pickles, A. (2002). Informative dropout and measurement error in cluster randomised trials. Paper presented at the International Biometric Society Conference 2002, Freiburg.

  • Social and Community Planning Research (1987).British Social Attitudes Panel Survey, 1983–1986 [Computer file] SN: 2197. Colchester, Essex: The Data Archive [Distributor].

    Google Scholar 

  • Spiegelhalter, D., Thomas, A., Best, N., & Gilks, W. (1996).BUGS 0.5 Bayesian Analysis using Gibbs sampling. Manual (version ii). Cambridge: MRC-Biostatistics Unit. Downloadable from http://www.mrc-bsu.cam.ac.uk/bugs/documentation/contents.shtml.

    Google Scholar 

  • StataCorp. (2003).Stata Statistical Software: Release 8.0. College Station, TX: Stata Corporation.

    Google Scholar 

  • Takane, Y. (1987). Analysis of covariance structures and probabilistic binary data.Communication & Cognition, 20, 45–62.

    Google Scholar 

  • Wiggins, R.D., Ashworth, K., O'Muircheartaigh, C.A., & Galbraith, J.I. (1990). Multilevel analysis of attitudes to aboration.The Statistician, 40, 225–234.

    Google Scholar 

  • Yang, S., & Pickles, A. (2004). Multilevel latent models for multivariate responses subject to measurement error.Submitted for publication.

  • Yang, S., Pickles, A., & Taylor, C. (1999). Multilevel latent variable model for analysing two-phase survey data. In H. Friedl, A. Berghold, & G. Kauermann (Eds.)Proceedings of the 14th International Workshop on Statistical Modeling (pp. 402–408). Graz, Austria.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Rabe-Hesketh.

Additional information

gllamm can be downloaded from http://www.gllamm.org. The paper was written while Sophia Rabe-Hesketh was employed at and Anders Skrondal was visiting the Department of Biostatistics and Computing, Institute of Psychiatry, King's College London.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabe-Hesketh, S., Skrondal, A. & Pickles, A. Generalized multilevel structural equation modeling. Psychometrika 69, 167–190 (2004). https://doi.org/10.1007/BF02295939

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02295939

Key words

Navigation