Studia Geophysica et Geodaetica

, Volume 34, Issue 3, pp 261–268 | Cite as

Nitric oxide density measurements at middle latitudes

  • G. A. Tuchkov
  • A. M. Zadorozhny
  • Jan Laštovička


The measurements of nitric oxide density were made by the photoionization method at 30–90km in several rocket flights near Volgograd. TheseNO densities are well within the range of other measurements below 60km, but become rather high above 70km. The upper mesosphericNO densities estimated by two different methods from ionospheric data in Central Europe (50 °N) are rather high, as well. The appropriateNO densities in the upper mesosphere still seem to be an open question.


Oxide Europe Nitric Oxide Structural Geology Density Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. D. Baker, A. F. Nagy, O. R. Olsen, E. S. Oran, J. Randhawa, D. F. Strobel, T. Tohmatsu: Measurement of the nitric oxide altitude distribution in the mid-latitude mesosphere. J Geophys. Res., 82 (1977), 3281.Google Scholar
  2. [2]
    C. A. Barth: Reference models for thermospheric NO. 27th COSPAR, Paper XI. 3.2, Espoo 1988.Google Scholar
  3. [3]
    D. Beran, W. Bangert: Trace constituents in the mesosphere and lower thermosphere during winter anomaly events. J. Atmos. Terr. Phys., 41 (1979), 1091.CrossRefGoogle Scholar
  4. [4]
    G. Brasseur: Coupling between the thermosphere and the stratosphere: The role of nitric oxide. Handbook for MAP, 10 (1984), 116.Google Scholar
  5. [5]
    А. Д. Данилов, С. ю. Ледомская: Окись азота в области Д. I. Экспериментальные данные о распределении NО. Геомагн. аэроном., 24 (1984), 614.Google Scholar
  6. [6]
    A. D. Danilov, J. Taubenheim: NO and temperature control of the D-region. Space Sci. Rev., 34 (1983), 413.CrossRefGoogle Scholar
  7. [7]
    A. Girard, J. Besson, D. Brand, J. Laurent, M. P. Lemaire, C. Lippens, C. Muller, J. Vercheval, M. Ackerman: Global results of grille spectrometer experiment on board Spacelab 1. Planet. Space Sci., 36 (1988), 29.CrossRefGoogle Scholar
  8. [8]
    J. Laštovička: The dependence of ionospheric absorption at 2775 kHz on the intensity of ionizing radiation — Ionospheric implications. Pure Appl. Geophys., 114 (1976), 321.Google Scholar
  9. [9]
    S. T. Massie: Nitric oxide delta band absorption measurements in the lower thermosphere. J. Geophys. Res., 85 A (1980), 2155.Google Scholar
  10. [10]
    L. G. Meira: Rocket measurements of upper atmospheric nitric oxide and their consequences to the lower ionosphere. J. Geophys. Res., 76 (1971), 202.Google Scholar
  11. [11]
    D. W. Rusch, R. T. Clancy: Minor constituents in the upper stratosphere and mesosphere. Rev. Geophys., 25 (1987), 479.Google Scholar
  12. [12]
    S. Solomon, P. J. Crutzen, R. G. Roble: Photochemical coupling between the thermosphere and the lower atmosphere. 2. Odd nitrogen from 50 to 120 km. J. Geophys. Res., 87 (1982), 7206.Google Scholar
  13. [13]
    А. М. Задорожный, Г. А. Тучков: Высотное распределение окиси азота в стратосфере и мезосфере. Оптика атмосферы, 1 (1988), 54.Google Scholar
  14. [14]
    Г. А. Тучков, А. М. Задорожный: Прямые измерения высотного раснределения окиси азота в средней атмосфере. Косм. исслед., 26 (1988), 474.Google Scholar
  15. [15]
    J. Laštovička: Nitric oxide concentration near the mesopause as deduced from ionospheric absorption measurements. Pure Appl. Geophys., 120 (1982), 607.Google Scholar
  16. [16]
    J. Boška: Vztah denní ionosférické absorpce radiových vln ke sluneční aktivitě a jeho využití. Kandidátská disertační práce, Geofyzikální ústav ČSAV, Praha 1986.Google Scholar
  17. [17]
    B. A. Pontano, L. C. Hale: Measurements of an ionizable constituent of the low ionosphere using a Lyman-alpha source and blunt probe. Space Res., 10 (1970), 208.Google Scholar
  18. [18]
    J. Laštovička: Diurnal asymmetry in the lower ionosphere — Seasonal variability. Studia geoph. et geod., 22 (1978), 309.Google Scholar
  19. [19]
    Л. П. Морозова, Я. Лащтовичка: Оценка концентрации окиси азота в мезосфере по изменению поглощения радиоволн во время внезапных ионосферных возмущений. Геомагн. азфоном., 25 (1985), 322.Google Scholar
  20. [20]
    N. Iwagami, T. Ogawa: An Antarctic NO density profile deduced from the gamma band airglow. Planet. Space Sci., 28 (1980), 867.CrossRefGoogle Scholar
  21. [21]
    А. М. Задорожный: Численное моделирование распределения нечетного азота в средней атмосфере. Изв. АН СССР, Физика атмосферы и океана, 19 (1983), 1272.Google Scholar
  22. [22]
    J. Laurent, P.-M. Lemaire, J. Besson et al.: Middle atmospheric NO and N2O observed by means of the Spacelab One grille spectrometer. Aeron. Acta. No. A293 (1984).Google Scholar
  23. [23]
    C. A. Barth: Rocket measurements of nitric oxide in the upper atmosphere. Planet. Space Sci., 14 (1966), 623.CrossRefGoogle Scholar
  24. [24]
    G. C. Tisone: Measurements of NO densities during sunrise at Kauai. J. Geophys. Res., 78 (1973), 746.Google Scholar
  25. [25]
    J. Laštovička: Diurnal asymmetry of NO concentration in the summer upper mesosphere in Central Europe. Adv. Space Res., 7 (1987), No. 9, 111.Google Scholar
  26. [26]
    WMO Global Ozone Research and Monitoring Project Report No. 11 (1982).Google Scholar

Copyright information

© Academia, Publishing House of the Czechoslovak Academy of Sciences 1990

Authors and Affiliations

  • G. A. Tuchkov
    • 1
  • A. M. Zadorozhny
    • 1
  • Jan Laštovička
    • 2
  1. 1.Novosibirsk UniversityNovosibirsk
  2. 2.Geophysical Institute, Czechosl. Acad. Sci.Prague

Personalised recommendations