, Volume 69, Issue 1, pp 123–146 | Cite as

Measuring the ability of transitive reasoning, using product and strategy information

Application Reviews And Case Studies


Cognitive theories disagree about the processes and the number of abilities involved in transitive reasoning. This led to controversies about the influence of task characteristics on individuals' performance and the development of transitive reasoning. In this study, a computer test was constructed containing 16 transitive reasoning tasks having different characteristics with respect to presentation form, task format, and task content. Both product and strategy information were analyzed to measure the performance of 6- to 13-year-old children. Three methods (MSP, DETECT, and Improved DIMTEST) were used to determine the number of abilities involved and to test the assumptions imposed on the data by item response models. Nonparametric IRT models were used to construct a scale for transitive reasoning. Multiple regression was used to determine the influence of task characteristics on the difficulty level of the tasks. It was concluded that: (1) the qualitatively distinct abilities predicted by Piaget's theory could not be distinguished by means of different dimensions in the data structure; (2) transitive reasoning could be described by one ability, and some task characteristics influenced the difficulty of a task; and (3) strategy information provided a stronger scale than product information.

Key words

cognitive ability cognitive strategies dimensionality of test data IRT models transitive reasoning transitive reasoning scale 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bouwmeester, S., & Aalbers, T. (2002).Tranred. Tilburg: Tilburg University.Google Scholar
  2. Bouwmeester, S., Sijtsma, K., & Vermunt, J.K. (2004). Latent class regression analysis to describe cognitive developmental phenomena: an application to transitive reasoning.European Journal of Developmental Psychology, 1, 67–86.Google Scholar
  3. Braine, M.D.S. (1959). The onthogeny of certain logical operations: Piaget's formulation examined by nonverbal methods.Monographs for the Society for Research in Child Development, 27, 41–63.Google Scholar
  4. Brainerd, C.J. (1977). Response criteria in concept development research.Child Development, 48, 360–366.Google Scholar
  5. Brainerd, C.J., & Kingma, J. (1984). Do children have to remember to reason? A fuzzy-trace theory of transitivity development.Developmental Review, 4, 311–377.Google Scholar
  6. Brainerd, C.J., & Kingma, J. (1985). On the independence of short-term memory and working memory in cognitive development.Cognitive Psychology, 17, 210–247.Google Scholar
  7. Brainerd, C.J., & Reyna, V.F. (1992). The memory independence effect: What do the data show? What do the theories claim?Developmental Review, 12, 164–186.Google Scholar
  8. Bryant, P.E., & Trabasso, T. (1971). Transitive inferences and memory in young children.Nature, 232, 456–458.Google Scholar
  9. Chapman, M., & Lindenberger, U. (1988). Functions, operations, and decalage in the development of transitivity.Developmental Psychology, 24, 542–551.Google Scholar
  10. Chapman, M., & Lindenberger, U. (1992). Transitivity judgments, memory for premises, and models of children's reasoning.Developmental Review, 12, 124–163.Google Scholar
  11. Clark, H.H. (1969). Linguistic processes in deductive reasoning.Journal of Educational Psychology, 76, 387–404.Google Scholar
  12. DeSoto, C.B., London, M., & Handel, S. (1965). Social reasoning and spatial paralogic.Journal of Social Psychology, 2, 513–521.Google Scholar
  13. Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research.Acta Psychologica, 37, 359–374.Google Scholar
  14. Fischer, G.H. (1995). The linear logistic test model. In G.H. Fischer and I.W. Molenaar (Eds.),Rasch Models, Foundations, Recent Developments, and Applications (pp. 131–155). New York: Springer-Verlag.Google Scholar
  15. Grayson, D.A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio.Psychometrika, 53, 383–392.Google Scholar
  16. Green, K.E., & Smith, R.M. (1987). A comparison of two methods of decomposing item difficulties.Journal of Educational Statistics, 12, 369–381.Google Scholar
  17. Hatti, J., Krakowski, K., Rogers, H.J., & Swaminathan, H. (1996). An assessment of Stout's index of essential unidimmensionality.Applied Psychological Measurement, 20, 1–14.Google Scholar
  18. Hemker, B.T., Sijtsma, K., & Molenaar, I.W. (1995). Selection of unidimensional scales from a multidimensional item bank in the polytomous Mokken IRT model.Applied Psychological Measurement, 19, 337–352.Google Scholar
  19. Hemker, B.T., Sijtsma, K., Molenaar, I.W., & Junker, B.W. (1997). Stochastic ordering using the latent trait and the sumscore in polytomous IRT models.Psychometrika, 62, 331–348.Google Scholar
  20. Hosenfield, B., Van der Maas, H. L.J., & van den Boom, D.C. (1997). Detecting bimodality in the analogical reasoning performance of elementary schoolchildren.International Journal of Behavioral Development, 20, 529–547.Google Scholar
  21. Huttenlocher, J. (1968). Constructing spatial images.Psychological Review, 75, 550–560.Google Scholar
  22. Huttenlocher, J., & Higgens, E.T. (1971). Adjectives, comparatives and syllogisms.Psychological Review, 78, 487–504.Google Scholar
  23. Junker, B.W. (1993). Conditional association, essential independence, and monotone unidimensional item response models.The Annals of Statistics, 21, 1359–1378.Google Scholar
  24. Kelderman, H., & Rijkes, C. P.M. (1994). Loglinear multidimensional IRT models for polytomously scores items.Psychometrika, 59, 149–176.Google Scholar
  25. McDonald, R.P. (1985). Linear versus nonlinear models in item response theory.Applied Psychological Measurement, 6, 379–396.Google Scholar
  26. Mokken, R.J. (1971).A Theory and Procedure of Scale Analysis. The Hague: Mouton.Google Scholar
  27. Mokken, R.J., Lewis, C., & Sijtsma, K. (1986). Rejoinder to “the Mokken scale: A critical discussion.”Applied Psychological Measurement, 10, 279–285.Google Scholar
  28. Molenaar, I.W., & Sijtsma, K. (2000).User's manual MSP5 for Windows. A program for Mokken Scale analysis for Polytomous items [software manual]. Groningen, The Netherlands: iecProGamma.Google Scholar
  29. Murray, J.P., & Youniss, J. (1968). Achievement of inferential transitivity and its relation to serial ordering.Child Development, 39, 1259–1268.Google Scholar
  30. Nandakumar, R., & Stout, W. (1993). Refinements of Stout's procedure for assessing latent trait unidimensionality.Journal of Educational Statistics, 18, 41–68.Google Scholar
  31. Nandakumar, R., Yu, F., Li, H.H., & Stout, W. (1998). Assessing unidimensionality of polytomous data.Applied Psychological Measurement, 22, 99–115.Google Scholar
  32. Piaget, J. (1961).Les Méchanicismes Perceptives. Paris: Presses Universitaires de France.Google Scholar
  33. Piaget, J., & Inhelder, B. (1941).Le Développement des Quantités Chez l'Enfant. Neuchatel: Delachaux et Niestlé.Google Scholar
  34. Piaget, J., Inhelder, B., & Szeminska, A. (1948).La Géométric Spontanée de l'Enfant. Paris: Presses Universitaires de France.Google Scholar
  35. Piaget, J., & Szeminska, A. (1941).La Genèse du Nombre Chez l'Enfant. Neuchatel: Delachaux et Niestlé.Google Scholar
  36. Quinton, G., & Fellows, B. (1975). “Perceptual” strategies in the solving of three-term series problems.British Journal of Psychology, 66, 69–78.Google Scholar
  37. Reckase, M.A. (1997). A linear logistic multidimensional model for dichotomous item response data. In W.J. van der Linden, & R.K. Hambleton (Eds.),Handbook of Modern Item Response Theory (pp. 271–286). New York: Springer-Verlag.Google Scholar
  38. Reyna, V.F., & Brainerd, C.J. (1990). Fuzzy processing in transitivity development.Annals of Operations Research, 23, 37–63.Google Scholar
  39. Roussos, L.A., Stout, W., & Marden, J. (1998). Using new proximity measures with hierarchical cluster analysis to detect multidimensionality.Journal of Educational Measurement, 35, 1–30.Google Scholar
  40. Scheiblechner, H. (1972). Das lernen un lösen complexer Denkaufgaben (Learning and solving complex thought problems).Zeitschrift für experimentelle und angewandte Psychologie, 19, 481–520.Google Scholar
  41. Sijtsma, K., & Meijer, R.R. (1992). A method for investigating the intersection of item response functions in Mokken's nonparametric IRT model.Applied Psychological Measurement, 16, 149–157.Google Scholar
  42. Sijtsma, K., & Molenaar, I.W. (2002).Introduction to Nonparametric Item Response Theory. Thousand Oaks, CA: Sage Publications.Google Scholar
  43. Smedslund, J. (1963). Development of concrete transitivity of length in children.Child Development, 34, 389–405.Google Scholar
  44. Smedslund, J. (1969). Psychological diagnostics.Psychological Bulletin, 71, 237–248.Google Scholar
  45. Sternberg, R.J. (1980a). Representation and process in linear syllogistic reasoning.Journal of Experimental Psychology, 109, 119–159.Google Scholar
  46. Sternberg, R.J. (1980b). The development of linear syllogistic reasoning.Journal of Experimental Child Psychology, 29, 340–356.Google Scholar
  47. Sternberg, R.J., & Weil, E.M. (1980). An aptitude × strategy interaction in linear syllogistic reasoning.Journal of Educational Psychology, 72, 226–239.Google Scholar
  48. Stout, W. (1993).DIMTEST. Urbana-Champaign, IL: The William Stout Institute for Measurement.Google Scholar
  49. Stout, W. (1996).DETECT. Urbana-Champaign, IL: The William Stout Institute for Measurement.Google Scholar
  50. Stout, W., Froelich, A.G., & Gao, F. (2001). Using resampling methods to produce an improved DIMTEST procedure. In A. Boomsma, M.A.J. van Duijn, & T.A.B. Snijders (Eds.),Essays on Item Response Theory (pp. 357–375). New York: Springer.Google Scholar
  51. Stout, W., Habing, B., Douglas, J., Kim, H.R., Roussos, L.A., & Zhang, J. (1996). Conditional covariance-based non-parametric multidimensionality assessment.Applied Psychological Measurement, 20, 331–354.Google Scholar
  52. Thomas, H., Lohaus, A., & Kessler, T. (1999). Stability and change in longitudinal water-level task performance.Developmental Psychology, 35, 1024–1037.Google Scholar
  53. Trabasso, T. (1977). The role of memory as a system in making transitive inferences. In R.V. Kail, J.W. Hagen, & J.M. Belmont (Eds.),Perspectives on the Development of Memory and Cognition (pp. 333–366). Hillsdale, NJ: Erlbaum.Google Scholar
  54. Trabasso, T., Riley, C.A., & Wilson, E.G. (1975). The representation of linear order and spatial strategies in reasoning: a developmental study. In R.J. Falmagne (Ed.),Reasoning: Representation and Process in Children and Adults (pp. 201–229). Hillsdale, NJ: Erlbaum.Google Scholar
  55. Van Abswoude, A. A.H., Van der Ark, L.A., & Sijtsma, K. (2004). A comparative study on test dimensionality assessment procedures under nonparametric IRT models.Applied Psychological Measurement, 28, 3–24.Google Scholar
  56. Verweij, A.C. (1999).Scaling transitive inference in 7–12 years old children. Unpublished doctoral dissertation, Vrÿe Universiteit Amsterdam, the Netherlands.Google Scholar
  57. Verweij, A.C., Sijtsma, K., & Koops, W. (1999). An ordinal scale for transitive reasoning by means of a deductive strategy.International Journal of Behavioral Development, 23, 241–264.Google Scholar
  58. Wright, B.C. (2001). Reconceptualizing the transitive inference ability: A framework for existing and future research.Developmental Review, 21, 375–422.Google Scholar
  59. Zhang, J., & Stout, W. (1999a). Conditional covariance structure of generalized compensatory multidimensional items.Psychometrika, 64, 129–152.Google Scholar
  60. Zhang, J., & Stout, W. (1999b). The theoretical DETECT index of dimensionality and its application to approximate simple structure.Psychometrika, 64, 213–249.Google Scholar

Copyright information

© The Psychometric Society 2004

Authors and Affiliations

  1. 1.Department of Methodology and Statistics FSWTilburg UniversityTilburgThe Netherlands

Personalised recommendations