, Volume 69, Issue 1, pp 33–54 | Cite as

The repeated insertion model for rankings: Missing link between two subset choice models

  • Jean-Paul Doignon
  • Aleksandar Pekeč
  • Michel RegenwetterEmail author
Theory And Methods


Several probabilistic models for subset choice have been proposed in the literature, for example, to explain approval voting data. We show that Marley et al.'s latent scale model is subsumed by Falmagne and Regenwetter's size-independent model, in the sense that every choice probability distribution generated by the former can also be explained by the latter. Our proof relies on the construction of a probabilistic ranking model which we label the “repeated insertion model.” This model is a special case of Marden's orthogonal contrast model class and, in turn, includes the classical Mallows φ-model as a special case. We explore its basic properties as well as its relationship to Fligner and Verducci's multistage ranking model.

Key words

Approval voting probabilistic choice models probabilistic ranking models subset choice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, H. (1995). Nonparametric 2-stage estimation of conditional choice probabilities in a binary choice model under uncertainty.Journal of Econometrics, 67, 337–378.Google Scholar
  2. Atkinson, D., Wampold, B., Lowe, S., Matthews, L., & Ahn, H. (1998). Asian American preferences for counselor characteristics: Application of the Bradley-Terry-Luce model to paired comparison data.Counseling Psychologist, 26, 101–123.Google Scholar
  3. Babington Smith, B. (1950). Discussion on Professor Ross's paper.Journal of the Royal Statistical Society, Series B, 12, 153–162.Google Scholar
  4. Baier, D., & Gaul, W. (1999). Optimal product positioning based on paired comparison data.Journal of Econometrics, 89, 365–392.Google Scholar
  5. Baltas, G., & Doyle, P. (2001). Random utility models in marketing research: A survey.Journal of Business Research, 51, 115–125.Google Scholar
  6. Barberá, S., & Pattanaik, P.K. (1986). Falmagne and the rationalizability of stochastic choices in terms of random orderings.Econometrica, 54, 707–715.Google Scholar
  7. Billot, A., & Thisse, J. (1999). A discrete choice model when context matters.Journal of Mathematical Psychology, 43, 518–538.Google Scholar
  8. Block, H.D., & Marschak, J. (1960). Random orderings and stochastic theories of responses. In Olkin, I., Ghurye, S., Hoeffding, H., Madow, W., and Mann, H., editors,Contributions to Probability and Statistics, pp. 97–132. Palo Alto, CA: Stanford University Press.Google Scholar
  9. Böckenholt, U., & Dillon, W. (1997). Modeling within-subject dependencies in ordinal paired comparison data.Psychometrika, 62, 411–434.Google Scholar
  10. Chen, Z., & Kuo, L. (2001). A note on the estimation of the multinomial logit model with random effects.American Statistician, 55, 89–95.Google Scholar
  11. Courcoux, P., & Semenou, M. (1997). Preference data analysis using a paired comparison model.Food Quality and Preference, 8, 353–358.Google Scholar
  12. Critchlow, D.E., Fligner, M.A., & Verducci, J.S. (1991). Probability models on rankings.Journal of Mathematical Psychology, 35, 294–318.Google Scholar
  13. Critchlow, D.E., Fligner, M.A., & Verducci, J.S., eds (1993).Probability Models and Statistical Analyses for Ranking Data. New York: Springer.Google Scholar
  14. Doignon, J.-P., & Fiorini, S. (2003). The approval-voting polytope: Combinatorial interpretation of the facets.Mathématiques, Informatique et Sciences Humaines, 161 29–39.Google Scholar
  15. Doignon, J.-P., & Fiorini, S. (in press). The facets and the symmetries of the approval-voting polytope.Journal of Combinatorial Theory, Series B.Google Scholar
  16. Doignon, J.-P., & Regenwetter, M. (1997). An approval-voting polytope for linear orders.Journal of Mathematical Psychology, 41, 171–188.Google Scholar
  17. Doignon, J.-P., & Regenwetter, M. (2002). On the combinatorial structure of the approval voting polytope.Journal of Mathematical Psychology, 46, 554–563.Google Scholar
  18. Falmagne, J.-C. (1978). A representation theorem for finite random scale systems.Journal of Mathematical Psychology, 18, 52–72.Google Scholar
  19. Falmagne, J.-C., & Regenwetter, M. (1996). Random utility models for approval voting.Journal of Mathematical Psychology, 40, 152–159.Google Scholar
  20. Fishburn, P. (2001). Signed orders, choice probabilities, and linear polytopes.Journal of Mathematical Psychology, 45, 53–80.Google Scholar
  21. Fligner, M.A., & Verducci, J.S. (1988). Multi-stage ranking models.Journal of the American Statistical Association, 83, 892–901.Google Scholar
  22. Huang, J., & Nychka, D. (2000). A nonparametric multiple choice method within the random utility framework.Journal of Econometrics, 97, 207–225.Google Scholar
  23. Ichimura, H., & Thompson, T.S. (1998). Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution.Journal of Econometrics, 86, 269–295.Google Scholar
  24. Knuth, D.E. (1998).The Art of Computer Programming, (vol. 3: Sorting and Searching, 2nd printing). Menlo Park, CA: Addison-Wesley.Google Scholar
  25. Koppen, M. (1995). Random utility representation of binary choice probabilities: Critical graphs yielding critical necessary conditions.Journal of Mathematical Psychology, 39, 21–39.Google Scholar
  26. Lewbel, A. (2000). Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables.Journal of Econometrics, 97, 145–177.Google Scholar
  27. Mallows, C.L. (1957). Non-null ranking models I.Biometrika, 44, 114–130.Google Scholar
  28. Marden, J. (1992). Use of nested orthogonal contrasts in analyzing rank data.Journal of the American Statistical Association, 87, 307–318.Google Scholar
  29. Marden, J.I. (1995).Analyzing and Modeling Rank Data. London: Chapman & Hall.Google Scholar
  30. Marley, A.A.J. (1993). Aggregation theorems and the combination of probabilistic rank orders. In Critchlow, D. E., Fligner, M. A., and Verducci, J.S., eds,Probability Models and Statistical Analyses for Ranking Data, pp. 216–240. New York: Springer.Google Scholar
  31. McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response.Journal of Applied Econometrics, 15, 447–470.Google Scholar
  32. Norpoth, H. (1979). The parties come to order! Dimensions of preferential choice in the West German Electorate, 1961–1976.The American Political Science Review, 73, 724–736.Google Scholar
  33. Peterson, G., & Brown, T. (1998). Economic valuation by the method of paired comparison, with emphasis on evaluation of the transitivity axiom.Land Economics, 74, 240–261.Google Scholar
  34. Regenwetter, M., & Doignon, J.-P. (1998). The choice probabilities of the latent-scale model satisfy the size-independent model whenn is small.Journal of Mathematical Psychology, 42, 102–106.Google Scholar
  35. Regenwetter, M., Marley, A., & Joe, H. (1998). Random utility threshold models of subset choice.Australian Journal of Psychology: Special issue on mathematical psychology, 50, 175–185.Google Scholar
  36. Tsai, R. (2000). Remarks on the identifiability of Thurstonian ranking models: Case V, case III, or neither?Psychometrika, 65, 233–240.Google Scholar
  37. Zeng, L. (2000). A heteroscedastic generalized extreme value discrete choice model.Sociological Methods & Research, 29, 118–144.Google Scholar

Copyright information

© The Psychometric Society 2004

Authors and Affiliations

  • Jean-Paul Doignon
    • 1
  • Aleksandar Pekeč
    • 2
  • Michel Regenwetter
    • 3
    Email author
  1. 1.Université Libre De BruxellesBelgium
  2. 2.Duke UniversityUSA
  3. 3.Department of PsychologyUniversity of IllinoisChampaign

Personalised recommendations