Skip to main content
Log in

The use of the simple 1D steady-state convective cloud model in the decision tree for determining the probability of thunderstorm occurrence

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Резюме

К нaбору nре¶rt;uкmоров, включaющему uн¶rt;ексы неусmоŭчuвосmu u резульmamы о¶rt;номерноŭ сmaцuонaрноŭ мо¶rt;елu кучево¶rt;о облaкa, был nрuменен aл¶rt;орumм ¶rt;воuчно¶rt;о рaзрешaюще¶rt;о ¶rt;еревa [1–3], оnре¶rt;еляющuŭ верояmносmь nоявленuя ¶rt;розы. Пре¶rt;uкmaнmы А, В, С, D=1/0 сооmвеmсmвуюm рaзному временному u nросmрaнсmвенному оnре¶rt;еленuю nоявленuя ¶rt;розы, зaре¶rt;uсmрuровaнному сuноnmuческuмu сmaнцuямu в 100-кuломеmровоŭ окресmносmu Прa¶rt;u. Пре¶rt;uкmоры былu оnре¶rt;елены нa основе ¶rt;aнных ТЕМР 12.00 ГМТ с сmaнцuu Прa¶rt;a Лuбущ ¶rt;ля месяцев V–VIII 1981–1985. Первые mесmы нanрaвлены нa срaвненuе кaчесmвa рaзрешенuя ¶rt;ля рaзных munов nре¶rt;uкmaнmов u ¶rt;ля нaборов nре¶rt;uкmоров, сосmоящuх mолько uз uн¶rt;ексов неусmоŭчuвосmu, mолько uз мо¶rt;ельных nре¶rt;uкmоров u uз велuчuн о¶rt;оuх munов. Нauлучшuе резульmamы uмеюm рaзрешaющuе ¶rt;еревья, nосmроенные нa нaборaх всех nре¶rt;uкmоров, nрuчем мо¶rt;ельные nре¶rt;uкmоры ¶rt;еŭсmвуюm nреж¶rt;е все¶rt;о в неусmоŭчuвоŭ веmвu ¶rt;еревьев. Нauвысше¶rt;о кaчесmвa рaзрешенuя было ¶rt;осmu¶rt;нуmо ¶rt;ля nре¶rt;uкmaнma В, чmо нaхо¶rt;umся в со¶rt;лaсuu с nоняmuем о сaмоŭ сuльноŭ связu меж¶rt;у mермо¶rt;uнaмuческuм сосmоянuем amмосферы u nоверхносmью, нa коmороŭ uмееm шuрокое nоявленuе ¶rt;роз.

Summary

The algorithm of a binary decision tree [1–3] determining the probability of thunderstorm occurrence was applied to a set of predictors including the instability indices and results of the 1D steady-state convective cloud model. Predictants A, B, C, D=1/0 correspond to various temporal and spatial limits for thunderstorm occurrence recorded at synoptic stations in an area 100km around Prague. The predictors were found on the basis of TEMP 12.00 GMT data from the Prague Libuš station for the months V–VIII in the years 1981–1985. The first tests were carried out to compare the decision quality for various types of predictants and for sets of predictors consisting only of the instability indices, only of model predictors and of both quantities. The best results were obtained using a decision tree constructed on the basis of sets of all the predictors, where the model predictors were employed primarily in the unstable branch of the tree. The best decision quality was obtained for predictant B, in agreement with the concept of the strongest connection between the thermodynamic state of the atmosphere and the area of the extent of thunderstorm occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. Balzer: Der Entscheidungsbaum — eine neue Möglichkeit der statistischen Wettervorhersage. Zeitschrift f. Met. 29 (1979), 16.

    Google Scholar 

  2. K. Balzer: Automated short-range area probability forecasts of thunderstorms, using the decision-tree method and observed Temp part A data. WMO-Symposium on probabilistic and statistical methods in weather forecasting. Nice (1980), 453.

  3. K. Balzer: Statistische Vorhersage seltener Ereignisse und die Macht des Zufalls. Zeitschrift f. Met. 39 (1989), (in print).

  4. J. Strachota: Ověření několika metod pro předpověd' bouřek v letním pololet'1965. Met. Zpr. 19 (1966), 105.

    Google Scholar 

  5. Z. Táborský: Porovnáni některých metod předpovědi bouřek. Met. Zpr. 19 (1966), 164.

    Google Scholar 

  6. Z. Táborský: Příspěvek k Faustově metodě pro předpověd' bouřek. Met. Zpr. 23 (1970), 2.

    Google Scholar 

  7. H. Faust: “Verdunstungslabilität” — ein neues Mass der atmosphärischen Labilität. Zeitschrift f. Met. 4 (1950), 97.

    Google Scholar 

  8. H. Faust: Eine einfache Methode zur Bestimmung der Verdunstungslabilität. Zeitschrift f. Met. 5 (1951), 66.

    Google Scholar 

  9. Denní přehled počasí (1. 5. 1981–31. 8. 1985). Český hydrometeorologický ústav. Praha.

  10. A. I. Weinstein, L. G. Davis: A parametrized numerical model of cumulus convection. Rep. No 11, Pennsylvania State University (1968).

  11. J. Simpson, V. Wiggert: Models of precipitating cumulus towers. Mon. Wea. Rev. 97 (1969), 471.

    Article  Google Scholar 

  12. R. A. Anthes: A cumulus parametrization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev. 105 (1977), 270.

    Article  Google Scholar 

  13. В. И. Бекряев: Турбулентная неизотермическая струя в стратифицированной атмосфере. Труды ЛГМИ 45 (1972), 62.

    Google Scholar 

  14. H. R. Pruppacher, J. D. Klett: Microphysics of clouds and precipitation. D. Reidel PC, Dordrecht Holland 1980.

    Google Scholar 

  15. Ch. Wisner, H. D. Orville, C. Myers: A numerical model of a hail-bearing cloud. J. Atm. Sci. 29 (1972), 1160.

    Article  Google Scholar 

  16. S. J. Lord, H. E. Willoughby, J. M. Piotrowicz: Role of a parametrized ice-phase microphysics in an axisymmetric, nonhydrostatic tropical cyclone model. J. Atm. Sci. 41 (1984), 2836.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Řezáčová, D., Motl, V. The use of the simple 1D steady-state convective cloud model in the decision tree for determining the probability of thunderstorm occurrence. Stud Geophys Geod 34, 147–166 (1990). https://doi.org/10.1007/BF02295834

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02295834

Keywords

Navigation