, Volume 69, Issue 3, pp 375–399 | Cite as

Tucker2 hierarchical classes analysis

Theory and Methods


This paper presents a new hierarchical classes model, called Tucker2-HICLAS, for binary three-way three-mode data. As any three-way hierarchical classes model, the Tucker2-HICLAS model includes a representation of the association relation among the three modes and a hierarchical classification of the elements of each mode. A distinctive feature of the Tucker2-HICLAS model, being closely related to the Tucker3-HICLAS model (Ceulemans, Van Mechelen & Leenen, 2003), is that one of the three modes is minimally reduced and, hence, that the differences among the association patterns of the elements of this mode are maximally retained in the model. Moreover, as compared to Tucker3-HICLAS, Tucker2-HICLAS implies three rather than four different types of parameters and as such is simpler to interpret. Two types of Tucker2-HICLAS models are distinguished: a disjunctive and a conjunctive type. An algorithm for fitting the Tucker2-HICLAS model is described and evaluated in a simulation study. The model is illustrated with longitudinal data on interpersonal emotions.

Key words

three-way three-mode data binary data hierarchical classes multiway data analysis clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carroll, J.D., & Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling via ann-way generalization of “Eckart-Young” decomposition.Psychometrika, 35, 283–319.Google Scholar
  2. Ceulemans, E., & Van Mechelen, I. (2003). Uniqueness ofn-wayn-mode hierarchical classes models.Journal of Mathematical Psychology, 47, 259–264.CrossRefGoogle Scholar
  3. Ceulemans, E., Van Mechelen, I., & Leenen, I. (2003). Tucker3 hierarchical classes analysis.Psychometrika, 68, 413–433.CrossRefGoogle Scholar
  4. Chaturvedi, A., & Carroll, J.D. (1994). An alternating combinatorial optimization approach to fitting theindclus and generalizedindclus models.Journal of Classification, 11, 155–170.CrossRefGoogle Scholar
  5. De Boeck, P., & Rosenberg, S. (1988). Hierarchical classes: Model and data analysis.Psychometrika, 53, 361–381.CrossRefGoogle Scholar
  6. Haggard, E.A. (1958).Intraclass correlation and the analysis of variance. New York: Dryden.Google Scholar
  7. Harshman, R.A. (1970). Foundations of theparafac procedure: Models and conditions for an explanatory multi-modal factor analysis. UCLAWorking Papers in Phonetics, 16, 1–84.Google Scholar
  8. Izard, C.E. (1977)Human emotions. New York: Plenum Press.Google Scholar
  9. Kim, K.H. (1982).Boolean matrix theory. New York: Marcel Dekker.Google Scholar
  10. Kirk, R.E. (1982).Experimental design: Procedures for the behavioral sciences (2nd ed.). Belmont, CA: Brooks/Cole.Google Scholar
  11. Kroonenberg, P.M. (1983).Three-mode principal component analysis: Theory and applications. Leiden: DSWO.Google Scholar
  12. Kroonenberg, P.M., & De Leeuw, J. (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms.Psychometrika, 54, 69–97.Google Scholar
  13. Leenen, I., & Van Mechelen, I. (1998). A branch-and-bound algorithm for Boolean regression. In I. Balderjahn, R. Mathar, & M. Schader (Eds.),Data highways and information flooding, a challenge for classification and data analysis (pp. 164–171). Berlin, Germany: Springer-Verlag.Google Scholar
  14. Leenen, I., & Van Mechelen, I. (2001). An evaluation of two algorithms for hierarchical classes analysis.Journal of Classification, 18, 57–80.CrossRefGoogle Scholar
  15. Leenen, I., Van Mechelen, I., & De Boeck, P. (1999). A generic disjunctive/conjunctive decomposition model forn-ary relations.Journal of Mathematical Psychology, 43, 102–122.CrossRefPubMedGoogle Scholar
  16. Leenen, I., Van Mechelen, I., De Boeck, P. (2001). Models for ordinal hierarchical classes analysis.Psychometrika, 66, 389–404.CrossRefGoogle Scholar
  17. Leenen, I., Van Mechelen, I., De Boeck, P., & Rosenberg, S. (1999).indclas: A three-way hierarchical classes model.Psychometrika, 64, 9–24.CrossRefGoogle Scholar
  18. Plutchik, R. (1962).The emotions: Facts, theories, and a new model. New York: Random House.Google Scholar
  19. Timmerman, M.E., & Kiers, H.A.L. (2000). Three-mode principal components analysis: Choosing the numbers of components and sensitivity to local optima.British Journal of Mathematical and Statistical Psychology, 53, 1–16.CrossRefPubMedGoogle Scholar
  20. Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis.Psychometrika, 31, 279–311.PubMedGoogle Scholar
  21. Van Mechelen, I., De Boeck, P., & Rosenberg, S. (1995). The conjunctive model of hierarchical classes.Psychometrika, 60, 505–521.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 2004

Authors and Affiliations

  1. 1.Katholieke Universiteit LeuvenBelgium

Personalised recommendations