Skip to main content

A hierarchical bayesian statistical framework for response time distributions

Abstract

This paper provides a statistical framework for estimating higher-order characteristics of the response time distribution, such as the scale (variability) and shape. Consideration of these higher order characteristics often provides for more rigorous theory development in cognitive and perceptual psychology (e.g., Luce, 1986). RT distribution for a single participant depends on certain participant characteristics, which in turn can be thought of as arising from a distribution of latent variables. The present work focuses on the three-parameter Weibull distribution, with parameters for shape, scale, and shift (initial value). Bayesian estimation in a hierarchical framework is conceptually straightforward. Parameter estimates, both for participant quantities and population parameters, are obtained through Markov Chain Monte Carlo methods. The methods are illustrated with an application to response time data in an absolute identification task. The behavior of the Bayes estimates are compared to maximum likelihood (ML) estimates through Monte Carlo simulations. For small sample size, there is an occasional tendency for the ML estimates to be unreasonably extreme. In contrast, by borrowing strength across participants, Bayes estimation “shrinks” extreme estimates. The results are that the Bayes estimators are more accurate than the corresponding ML estimators.

This is a preview of subscription content, access via your institution.

References

  • Ahrens, J., & Dieter, U. (1974). Computer methods for sampling from gamma, beta, poisson and binomial distributions.Computing, 12, 223–246.

    Google Scholar 

  • Ahrens, J., & Dieter, U. (1982). Generating gamma variates by a modified rejection technique.Communications of the Association for Computing Machinery (ACM), 25, 47–54.

    Google Scholar 

  • Andrews, S., & Heathcote, A. (2001). Distinguishing common and task-specific processes in word identification: A matter of some moment.Journal of Experimental Psychology: Learning, Memory, & Cognition, 27, 514–544.

    Article  Google Scholar 

  • Ashby, F. G., Tien, J.-Y., & Balikrishnan, J.D. (1993). Response time distributions in memory scanning.Journal of Mathematical Psychology, 37, 526–555.

    Google Scholar 

  • Ashby, F. G., & Townsend, J.T. (1980). Decomposing the reaction time distribution: Pure insertion and selective influences revisited.Journal of Mathematical Psychology, 21, 93–123.

    Article  Google Scholar 

  • Balota, D.A., & Chumbley, J.I. (1984). Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage.Journal of Experimental Psychology: Human Perception and Performance, 10, 340–357.

    PubMed  Google Scholar 

  • Balota, D.A., & Spieler, D.H. (1999). Word frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency.Journal of Experimental Psychology: General, 128, 32–55.

    Article  Google Scholar 

  • Berger, J.O., & Sun, D. (1993). Bayesian analysis for the poly-Weibull distribution.Journal of the American Statistical Association, 88, 1412–1418.

    Google Scholar 

  • Bowman, K.O., & Shenton, L.R. (1988).Properties of estimators for the gamma distribution. New York, NY: Marcel Dekker.

    Google Scholar 

  • Busemeyer, J.R., & Townsend, J.T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment.Psychological Review, 100, 432–459.

    Article  PubMed  Google Scholar 

  • Cave, C., & Squire, L. (1992). Intact and long-lasting repetition priming in amnesia.Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 509–520.

    Article  Google Scholar 

  • Dey, D., Ghosh, S., & Mallick, B. (2000).Generalized linear models: A Bayesian perspective. New York, NY: Marcel Dekker.

    Google Scholar 

  • Dolan, C., van der Maas, H., & Mollenaar, C. M. (in press). A framework for ML estimation of parameters of (mixtures of) common reaction time distributions given optional truncation or censoring.Behavioral Research Methods, Instruments, and Computers.

  • Dzhafarov, E.N. (1992). The structure of simple reaction time to step-function signals.Journal of Mathematical Psychology, 36, 235–268.

    Google Scholar 

  • Fox, J.P., & Glas, C.A.W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling.Psychometrika, 66, 271–288.

    Article  Google Scholar 

  • Gelfand, A., & Smith, A.F.M. (1990). Sampling based approaches to calculating marginal densities.Journal of the American Statistical Association, 85, 398–409.

    Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995).Bayesian data analysis. London, U.K.: Chapman and Hall.

    Google Scholar 

  • Gelman, A., & Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences (with discussion).Statistical Science, 7, 457–511.

    Google Scholar 

  • Gilks, W. & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling.Applied Statistics, 41, 337–348.

    Google Scholar 

  • Hasher, L., & Zacks, R.T. (1979). Automatic and effortful processes in memory.Journal of Experimental Psychology: General, 108, 356–388.

    Google Scholar 

  • Heathcote, A. (1996). RTSYS: A DOS application for the analysis of reaction time data.Behavioral Research Methods, Instruments, and Computers, 28, 427–445.

    Google Scholar 

  • Heathcote, A., Popiel, S. J., & Mewhort, D. J. (1991). Analysis of response time distributions: An example using the Stroop task.Psychological Bulletin, 109, 340–347.

    Article  Google Scholar 

  • Hockley, W.E. (1984). Analysis of reaction time distributions in the study of cognitive processes.Journal of Experimental Psychology: Learning, Memory, & Cognition, 10, 598–615.

    Google Scholar 

  • Hohle, R.H. (1965). Inferred components of reaction time as a function of foreperiod duration.Journal of Experimental Psychology, 69, 382–386.

    PubMed  Google Scholar 

  • Hsu, Y.F. (1999).Two studies on simple reaction times: I. On the psychophysics of the generalized Pieron's law. II. On estimating minimum detection times using the time estimation paradigm. Unpublished doctoral dissertation. Irvine, CA: University of California.

    Google Scholar 

  • Jacoby, L.L. (1991). A process dissociation framework: Separating automatic fromm intentional uses of memory.Journal of Memory and Language, 30, 513–541.

    Article  Google Scholar 

  • Jiang, Y., Rouder, J.N., & Speckman, P.L. (in press). A note on the sampling properties of the Vincentizing (quantile averaging) procedure.Journal of Mathematical Psychology.

  • Johnson, N.L., Kotz, S., & Balakrishnan, N. (1994).Continuous univariate distributions, Volume 2 (2nd ed.). New York, NY: John Wiley & Wiley.

    Google Scholar 

  • Kreft, I.G.G., & de Leeuew, J. (1998).Introducing multilevel modeling. London, U.K.: Sage.

    Google Scholar 

  • Link, S.W. (1975). The relative judgement theory of two choice response time.Journal of Mathematical Psychology, 12, 114–135.

    Article  Google Scholar 

  • Logan, G.D. (1988). Towards an instance theory of automization.Psychological Review, 95, 492–527.

    Article  Google Scholar 

  • Logan, G.D. (1992). Shapes of reaction time distributions and shapes of learning curves: A test of the instance theory of automaticity.Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 883–914.

    Article  Google Scholar 

  • Luce, R.D. (1986).Response times. New York, NY: Oxford University Press.

    Google Scholar 

  • Madden, D.J., Gottlob, L.R., Denny, L.L., Turkington, T.G., Provenzale, J.M., Hawk, T.C., & Coleman, R.E. (1999). Aging and recognition memory: Changes in regional cerebral blood flow associated with components of reaction time distributions.Journal of Cognitive Neuroscience, 11, 511–520.

    Article  PubMed  Google Scholar 

  • Mitchell, D. & Brown, A. (1988). Persistent repetition priming in picture naming and its dissociation from recognition memory.Journal of Experimental Psychology: Learning, Memory, & Cognition, 14, 213–222.

    Article  Google Scholar 

  • Nelder, J.A., & Mead, R. (1965). A simplex method for function minimization.Computer Journal, 7, 308–313.

    Google Scholar 

  • Petrusic, W.M., Baranski, J.V., & Kennedy, R. (1999). Similarity comparisons with remembered and perceived magnitudes: Memory psychophysics and fundamental measurement.Memory & Cognition, 26, 1041–1055.

    Google Scholar 

  • Plourde, C.E., & Besner, D. (1997). On the locus of the word frequency effect in visual word recognition.Canadian Journal of Experimental Psychology, 51, 181–194.

    Google Scholar 

  • Posner, M.I. (1978).Chronometric explorations of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, F.P. (1992).Numerical recipes in C: The art of scientific computing (2nd ed.). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Ratcliff, R. (1978). A theory of memory retrieval.Psychological Review, 85, 59–108.

    Google Scholar 

  • Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics.Psychological Bulletin, 86, 446–461.

    PubMed  Google Scholar 

  • Ratcliff, R., & Rouder, J.N. (1998). Modeling response times for decisions between two choices.Psychological Science, 9, 347–356.

    Article  Google Scholar 

  • Ratcliff, R., & Rouder, J. (2000). A diffusion model analysis of letter masking.Journal of Experimental Psychology: Human Perception and Performance, 26, 127–140.

    Article  PubMed  Google Scholar 

  • Rouder, J.N. (1996). Premature sampling in random walks.Journal of Mathematical Psychology, 40, 287–296.

    Article  Google Scholar 

  • Rouder, J.N. (2000). Assessing the roles of change discrimination and luminance integration: Evidence for a hybrid race model of perceptual decision making in luminance discrimination.Journal of Experimental Psychology: Human Perception and Performance, 26, 359–378.

    Article  PubMed  Google Scholar 

  • Rouder, J.N. (2001). Testing evidence accrual models by manipulating stimulus onset.Journal of Mathematical Psychology, 45, 334–354.

    Article  PubMed  Google Scholar 

  • Schnieder, W., & Shiffrin, R.M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention.Psychological Review, 84, 1–66.

    Google Scholar 

  • Smith, P.L. (1995). Multiple detector models of visual simple reaction time.Psychological Review, 102, 567–593.

    Article  Google Scholar 

  • Smith, R.L., & Naylor, J.C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution.Applied Statistician, 36, 358–369.

    Google Scholar 

  • Spieler, D.H., Balota, D.A., & Faust, M.E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer's type.Journal of Experimental Psychology: Human Perception and Performance, 22, 461–479.

    Article  PubMed  Google Scholar 

  • Spieler, D.H., Balota, D.A., & Faust, M.E. (2000). Levels of selective attention revealed through analyses of response time distributions.Journal of Experimental Psychology: Human Perception and Performance, 26, 506–526.

    Article  PubMed  Google Scholar 

  • Sternberg, S. (1966). High-speed scanning in human memory.Scuebce, 153, 652–654.

    Google Scholar 

  • Tanner, M.A. (1993).Tools for statistical inference: Methods for the exploration of posterior distributions and likelihood functions. Berlin, Germany: Springer.

    Google Scholar 

  • Thomas, E.A.C., & Ross, B. (1980). On appropriate procedures for combining probability distributions within the same family.Journal of Mathematical Psychology, 21, 136–152.

    Article  Google Scholar 

  • Townsend, J.T., & Ashby, F.G. (1983).Stochastic modeling of elementary psychological processes. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Treisman, A.M., & Gelade, G. (1980). A feature-integration theory of attention.Cognitive Psychology, 12, 97–136.

    Article  PubMed  Google Scholar 

  • Ulrich, R., & Miller, J.O. (1993). Information processing models generating lognormally distributed reaction times.Journal of Mathematical Psychology, 37, 513–525.

    Article  Google Scholar 

  • Van Zandt, T. (2000). How to fit a response time distribution.Psychonomic Bulletin and Review, 7, 424–465.

    PubMed  Google Scholar 

  • Van Zandt, T., Colonius, H., & Proctor, R. W. (2000). A comparison of two response time models applied to perceptual matching.Psychonomic Bulletin and Review, 7, 208–256.

    PubMed  Google Scholar 

  • Vincent, S.B. (1912). The function of vibrissae in the behavior of the white rat.Behavioral Monographs, 1, No. 5.

  • Wang, X.H., Bradlow, E.T., & Wainer, H. (2002). A general Bayesian model for testlets: Theory and applications.Applied Psychological Measurement, 26, 109–128.

    Article  Google Scholar 

  • Wild, P., & Gilks, W.R. (1993). Adaptive rejection sampling from log-concave density functions.Applied Statistics, 42, 701–708.

    Google Scholar 

  • Wixted, J.T., & Rohrer, D. (1993). Proactive interference and the dynamics of free recall.Journal of Experimental Psychology: Learning, Memory, & Cognition, 19, 1024–1039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey N. Rouder.

Additional information

We are grateful to Michael Stadler who allowed us use of his data. This research is supported by (a) National Science Foundation Grant SES-0095919 to J. Rouder, D. Sun, and P. Speckman, (b) University of Missouri Research Board Grant 00-77 to J. Rouder, (c) National Science Foundation grant DMS-9972598 to Sun and Speckman, and (d) a grant from the Missouri Department of Conservation to D. Sun.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rouder, J.N., Sun, D., Speckman, P.L. et al. A hierarchical bayesian statistical framework for response time distributions. Psychometrika 68, 589–606 (2003). https://doi.org/10.1007/BF02295614

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02295614

Key words

  • Bayesian analysis
  • hierarchical models
  • response time
  • MCMC
  • Weibull distribution