Advertisement

Psychometrika

, Volume 55, Issue 2, pp 255–262 | Cite as

The direct product model for the mtmm matrix parameterized as a second order factor analysis model

  • Werner Wothke
  • Michael W. Browne
Article

Abstract

The composite direct product model for the multitrait-multimethod matrix is reparameterized as a second-order factor analysis model. This facilitates the use of widely available computer programs such as LISREL and LISCOMP for fitting the model.

Key words

multitrait-multimenthodmatrix multiplicative model second order factor analysis equivalent multivariate models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentler, P. M., & Lee, S. Y. (1978). Statistical aspect of a three-mode factor analysis model.Psychometrika, 43, 343–352.Google Scholar
  2. Bentler, P. M., Poon, W. Y., & Lee, S. Y. (1988). Generalized multimode latent variable models: Implementation by standard programs.Computational Statistics and Data Analysis, 6, 107–118.Google Scholar
  3. Bloxom, B. (1968). A note on invariance in three-mode factor analysis.Psychometrika, 33, 347–350.Google Scholar
  4. Bloxom, B. (1984). Tucker's three-mode factor analysis model. In H. G. Law, C. W. Snyder, Jr., J. A. Hattie, & R. P. McDonald (Eds.),Research methods for multiomde data analysis. New York: Praeger.Google Scholar
  5. Boruch, R. F., & Wolins, L. (1970). A procedure for estimation of trait, method, and error variance attributable to a measure.Educational and Psychological Measurement, 30, 547–574.Google Scholar
  6. Brown, M. W. (1984a). the decomposition of multitrait-multimethod matrices.The British Journal of Mathematical and Statistical Psychology, 37, 1–21.Google Scholar
  7. Browne, M. W. (1984b). Asymptotically distribution-free methods for the analysis of covariance structures.The British Journal of Mathematical and Statistical Psychology, 37, 62–83.Google Scholar
  8. Browne, M. W. (1985).MUTMUM: Decomposition of multitrait-multimethod matrices, minimum option version. Unpublished manuscript, University of South Africa.Google Scholar
  9. Browne, M. W. (in press). Relationships between an additive model and a multiplicative model for multitraitmultimethod matrices. In R. Coppi & S. Bolasco (Eds.),Analysis of multiway data matrices. Amsterdam: Elsevier.Google Scholar
  10. Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix.Psychological Bulletin, 56, 81–105.Google Scholar
  11. Campbell, D. T., & O'Connell, E. J. (1967). Method factors in multitrait-multimethod matrices: Multiplicative rather than additive?Multivariate Behavioral Research, 2, 409–426.Google Scholar
  12. Campbell, D. T., & O'Connell, E. J. (1982). Methods as diluting trait relationships rather than adding irrelevant systematic variance. In D. Brinberg & L. H. Kidder (Eds.),Forms of validity in research. New directions for methodology of social and behavioral sience (Vol. 12). San Francisco: Jossey-Bass.Google Scholar
  13. Cudeck, R. (1988). Multiplicative models and MTMM matrices.Journal of Educational Statistics, 13(2), 131–147.Google Scholar
  14. Jackson, D. N. (1975). Multimethod factor analysis: A reformulation.Multivariate Behavioral Research, 10, 259–275.Google Scholar
  15. Jöreskog, K. G. (1966). Testing a simple structure hypothesis in factor analysis.Psychometrika, 31, 165–178.Google Scholar
  16. Jöreskog, K. G. (1971). Statistical analysis of congeneric tests.Psychometrika, 36, 109–133.Google Scholar
  17. Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices.Psychometrika, 43, 443–477.Google Scholar
  18. Jöreskog, K. G., & Sörbom, D. (1988).LISREL 7. A guide to the program and applications. Chicago, IL: SPSS Publications.Google Scholar
  19. Lawler, E. E., III (1967). The multitrait-multimethod approach to measuring managerial job performance.Journal of Applied Psychology, 51, 369–381.Google Scholar
  20. Muthén, B. O. (19870.LISCOMP, Analysis of linear structural equations with a comprehensive measurement model. Mooresville, IN: Scientific Software.Google Scholar
  21. Rindskopf, D. (1983). Parameterizing inequality constraints on unique variances in linear structural models.Psychometrika, 48, 73–83.Google Scholar
  22. Schmitt, N., & Stults, D. M. (1986). Methodology review: Analysis of multitrait-multimethod matrices.Applied Psychological Measurement, 10(1), 1–22.Google Scholar
  23. Searle, S. R. (1982). Matrix algebra useful for statistics. New York: Wiely.Google Scholar
  24. Swain, A. J. (1975).Analysis of parametric structures for variance matrices. Unpublished doctoral dissertation, University of Adelaide.Google Scholar
  25. Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis.Psychometrika, 31, 279–311.Google Scholar
  26. Werts, C. E. & Linn, R. L. (1970). Path analysis. Psychological examples.Psychological Bulletin, 74(3), 193–212.Google Scholar
  27. Widaman, K. F. (1985). Hierarchically nested covariance structure models for multitrait-multimethod data.Applied Psychological Measurement, 9(1), 1–26.Google Scholar
  28. Wiley, D., Schmidt, W. H., & Bramble, W. J. (1973). Studies of a class of covariance structure models.Journal of the American Statistical Association, 68(342), 317–323.Google Scholar
  29. wothke, W. (1987, April). Multivariate linear models of the multitrait-multimethod matrix. paper presented at the meeting of the American Educational Research Association, Washington, DC. (Educational Resources Information Center: ED 283 850, TM 870 369)Google Scholar

Copyright information

© The Psychometric Society 1990

Authors and Affiliations

  • Werner Wothke
    • 1
  • Michael W. Browne
    • 2
  1. 1.Scientific Software, Inc.Chicago
  2. 2.University of South AfricaSouth Africa

Personalised recommendations