, Volume 67, Issue 2, pp 299–313 | Cite as

Optimal measurement conditions for spatiotemporal eeg/meg source analysis

  • Hilde M. Huizenga
  • Dirk J. Heslenfeld
  • Peter C. M. Molenaar


Electromagnetic source analysis yields estimates of the sources of the Electro- and/or MagnetoEncephaloGram (EEG/MEG) and thus generates a functional description of the human brain. The standard errors of the source estimates are influenced by the number and position of EEG/MEG sensors, by the number of time samples, and by the number of trials in which EEG/MEG is measured. Therefore, optimal design theory is applied to determine the required number and position of sensors, the required number of samples, and the required number of trials. To that end, the Fedorov exchange algorithm is extended to incorporate multi-response models. A simulation study and an empirical study on visual evoked potentials indicate that the proposed method is fast and reliable, and improves source precision considerably.

Key words

spatiotemporal EEG/MEG source analysis multiresponse nonlinear regression optimal design Fedorov exchange 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahonen, A.I., Hämäläinen, M.S., Ilmoniemi, R.J., Kajola, M.J., Knuutila, J.E.T., Simola, J.T., & Vilkman, V.A. (1993). Sampling theory for neuromagnetic detector arrays.IEEE Transactions on Biomedical Engineering, 40(9), 859–869.Google Scholar
  2. Atkinson, A.C., & Donev, A.N. (1992).Optimum experimental designs. Oxford, U.K.: Clarendon Press.Google Scholar
  3. Browne, M.W., & du Toit, S.H.C. (1992). Automated fitting of nonstandard models.Multivariate Behavioral Research, 27, 269–300.Google Scholar
  4. Cook, R.D., & Nachtsheim, C.J. (1980). A comparison of algorithms for constructing exact D-optimal designs.Technometrics, 22(3), 315–324.Google Scholar
  5. Cuffin, B.N. (1985). A comparison of moving dipole inverse solutions using EEG's and MEG's.IEEE Transactions on Biomedical Engineering, 32(11), 905–910.Google Scholar
  6. Cuffin, B.N., & Cohen, D. (1979). Comparison of the magnetoencephalogram and electroencephalogram.Electroencephalography and Clinical Neurophysiology, 47, 132–146.Google Scholar
  7. Gaumond, R.P., Lin, J.-H., & Geselowitz, D.B. (1983). Accuracy of dipole localization with a spherical homogeneous model.IEEE Transactions on Biomedical Engineering, 30(1), 29–34.Google Scholar
  8. Gill, P.E., Murray, W., & Wright, M.H. (1981).Practical Optimization. London, U.K.: Academic Press.Google Scholar
  9. Gunji, A., Kagigi, R., & Hoshiyama, M. (2000). Spatiotemporal source analysis of vocalization-associated magnetic fields.Cognitive Brain Research, 9, 157–163.Google Scholar
  10. Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., & Lounasmaa, O.V. (1993). Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain.Reviews of Modern Physics, 65, 413–497.Google Scholar
  11. Hari, R., Joutsiniemi, S.-L, & Sarvas, J. (1988). Spatial resolution of neuromagnetic records: Theoretical calculations in a spherical model.Electroencephalography and Clinical Neurophysiology, 71, 64–72.Google Scholar
  12. Hochwald, B., & Nehorai, A. (1997). Magnetoencephalography with diversely oriented and multicomponent sensors.IEEE Transactions on Biomedical Engineering, 44, 40–50.Google Scholar
  13. Huizenga, H.M. (1995).The statistical approach to electromagnetic source localization in the brain. Unpublished doctoral dissertation, University of Amsterdam, Amsterdam.Google Scholar
  14. Huizenga, H.M., De Munck, J.C., Waldorp, L.J., & Grasman, R.P.P.P. (in press). Spatiotemporal EEG/MEG source analysis based on a parametric noise covariance model.IEEE Transactions on Biomedical Engineering.Google Scholar
  15. Huizenga, H.M., & Molenaar, P.C.M. (1994). Estimating and testing the sources of evoked potentials in the brain.Multivariate Behavioral Research, 29, 237–262.Google Scholar
  16. Huizenga, H.M., & Molenaar, P.C.M. (1995). Equivalent source estimation of scalp potential fields contaminated by heteroscedastic and correlated noise.Brain Topography, 8, 13–33.Google Scholar
  17. Huizenga, H.M., & Molenaar, P.C.M. (1996). Ordinary least squares dipole localization is influenced by the reference.Electroencephalography and Clinical Neurophysiology, 99, 562–567.Google Scholar
  18. Huizenga, H.M., van Zuijen, T.L., Heslenfeld, D.J., & Molenaar, P.C.M. (2001). Simultaneous MEG and EEG source analysis.Physics in Medicine and Biology, 46(7), 1737–1751.Google Scholar
  19. Kenemans, J.L., Baas, J.M.P., Mangun, G.R., Lijffijt, M., & Verbaten, M.N. (2000). On the processing of spatial frequencies as revealed by evoked-potential source modeling.Clinical Neurophysiology, 111, 1113–1123.Google Scholar
  20. Kuc, R. (1996). Magnetometer spacing criterion for biomagnetic source current imaging.IEEE Transactions on Biomedical Engineering, 43(11), 1125–1127.Google Scholar
  21. Lange, N., & Zeger, S.L. (1997). Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging.Applied Statistics, 46, 1–29.Google Scholar
  22. Mosher, J.C., Spencer, M.E., Leahy, R.M., & Lewis, P.S. (1993). Error bounds for EEG and MEG dipole source localization.Electroencephalography and Clinical Neurophysiology, 86, 303–321.Google Scholar
  23. Nunez, P.L. (1988). Spatial filtering and experimental strategies in EEG. In D. Samson-Dollfus (Ed.),Statistics and topography in quantitative EEG. Paris, France: Elsevier.Google Scholar
  24. Ogura, Y., & Sekihara, K. (1993). Relationship between dipole parameter estimation errors and measurement conditions in magnetoencephalography.IEEE Transactions on Biomedical Engineering, 40(9), 919–924.Google Scholar
  25. Pukelsheim, F. (1993).Optimal design of experiments. New York, NY: Wiley.Google Scholar
  26. Schott, J.R. (1997).Matrix analysis for statistics. New York, NY: Wiley.Google Scholar
  27. Seber, G.A.F., & Wild, C.J. (1989).Nonlinear regression. New York, NY: Wiley.Google Scholar
  28. Silvey, S.D. (1970).Statistical inference. Harmondsworth, U.K.: Penguin.Google Scholar
  29. Spitzer, A.R., Cohen, L.G., Fabrikant, J., & Hallet, M. (1989). A method for determining optimal interelectrode spacing for cerebral topographic mapping.Electroencephalography and Clinical Neurophysiology, 72, 355–361.Google Scholar
  30. St. John, R.C., & Draper, N.R. (1975). D-optimality for regression designs: A review.Technometrics, 17, 15–23.Google Scholar
  31. Tiitinen, H., Sivonen, P., Alku, P., Virtanen, J., & Näätänen, R. (1999). Electromagnetic recordings reveal latency differences in speech and tine processing in humans.Cognitive Brain Research, 8, 355–363.Google Scholar
  32. Vaidyanathan, C., & Buckley, K.M. (1997). A sampling theorem for EEG electrode configuration.IEEE Transactions on Biomedical Engineering, 44(1), 94–97.Google Scholar
  33. Vardi, Y., Shepp, L.A., & Kaufman, L. (1985). A statistical model for positron emission tomography.Journal of the American Statistical Association, 80, 8–20.Google Scholar
  34. Waldorp, L.J., Huizenga, H.M., Dolan, C.V., & Molenaar, P.C.M. (2001). Estimated generalized least squares electromagnetic source analysis based on a parametric noise covariance model.IEEE Transactions on Biomedical Engineering, 48(6), 737–741.Google Scholar

Copyright information

© The Psychometric Society 2002

Authors and Affiliations

  • Hilde M. Huizenga
    • 1
  • Dirk J. Heslenfeld
    • 2
  • Peter C. M. Molenaar
    • 3
  1. 1.Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.University of Amsterdam andFree University of AmsterdamThe Netherlands
  3. 3.University of AmsterdamThe Netherlands

Personalised recommendations