Skip to main content
Log in

Bayesian estimation of a multilevel IRT model using gibbs sampling

  • Articles
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In this article, a two-level regression model is imposed on the ability parameters in an item response theory (IRT) model. The advantage of using latent rather than observed scores as dependent variables of a multilevel model is that it offers the possibility of separating the influence of item difficulty and ability level and modeling response variation and measurement error. Another advantage is that, contrary to observed scores, latent scores are test-independent, which offers the possibility of using results from different tests in one analysis where the parameters of the IRT model and the multilevel model can be concurrently estimated. The two-parameter normal ogive model is used for the IRT measurement model. It will be shown that the parameters of the two-parameter normal ogive model and the multilevel model can be estimated in a Bayesian framework using Gibbs sampling. Examples using simulated and real data are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R.J., Wilson, M., & Wu, M. (1997). Multilevel item response models: An approach to errors in variable regression.Journal of Educational and Behavioral Statistics, 22, 47–76.

    Google Scholar 

  • Albert, J.H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling.Journal of Educational Statistics, 17, 251–269.

    Google Scholar 

  • Béguin, A.A., & Glas, C.A.W. (1998).MCMC estimation of multidimensional IRT models (Technical Report No. 98-14). Twente, The Netherlands: University of Twente, Faculty of Educational Science and Technology.

    Google Scholar 

  • Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm.Psychometrika, 46, 443–459.

    Google Scholar 

  • Box, G.E.P., & Tiao, G.C. (1973).Bayesian inference in statistical analysis. Reading, MA: Addison-Wesley Publishing.

    Google Scholar 

  • Bradlow, E.T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets.Psychometrika, 64, 153–168.

    Google Scholar 

  • Bryk, A.S., & Raudenbush, S.W. (1992).Hierarchical linear models. Newbury Park, CA: Sage Publications.

    Google Scholar 

  • Bryk, A.S., Raudenbush, S.W., & Congdon, R.T. (1996).Hlm for Windows. Chicago, IL: Scientific Software International.

    Google Scholar 

  • de Leeuw, J., & Kreft, I.G.G. (1986). Random coefficient models for multilevel analysis.Journal of Educational and Behavioral Statistics, 11, 57–86.

    Google Scholar 

  • Doolaard, S. (1999).Schools in change or schools in chains. Unpublished doctoral dissertation, University of Twente, The Netherlands.

    Google Scholar 

  • Gelfand, A.E., Hills, S.E., Racine-Poon, A., & Smith, A.F.M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling.Journal of the American Statistical Association, 85, 972–985.

    Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995).Bayesian data analysis. London, UK: Chapman & Hall.

    Google Scholar 

  • Gelman, A., Meng, X-L., & Stern, H.S. (1996). Posterior predictive assessment of model fitness via realized discrepancies.Statistica Sinica, 6, 733–807.

    Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images.IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Google Scholar 

  • Gibbons, R.D., & Hedeker, D.R. (1992). Full-information bi-factor analysis.Psychometrika, 57, 423–463.

    Google Scholar 

  • Glas, C.A.W., Wainer, H., & Bradlow, E.T. (2000). MML and EAP estimation in testlet-based adaptive testing. In W.J. van der Linden & C.A.W. Glas (Eds.),Computerized adaptive testing: Theory and practice (pp. 271–287). Boston, MA: Kluwer Academic Publishers.

    Google Scholar 

  • Goldstein, H. (1995).Multilevel statistical models (2nd ed.). London: Edward Arnold.

    Google Scholar 

  • Hoijtink, H., & Boomsma, A. (1995). On person parameter estimation in the dichotomous Rasch model. In G.H. Fischer & I.W. Molenaar (Eds.),Rasch models: Foundations, recent developments and applications (pp. 53–68). New York, NY: Springer.

    Google Scholar 

  • Hoijtink, H., & Molenaar, I.W. (1997). A multidimensional item response model: Constrained latent class analysis using the Gibbs sampler and posterior predictive checks.Psychometrika, 62, 171–189.

    Google Scholar 

  • Lindley, D.V., & Smith, A.F.M. (1972). Bayes estimates for the linear model.Journal of the Royal Statistical Society, Series B, 34, 1–41.

    Google Scholar 

  • Longford, N.T. (1993).Random coefficient models. New York, NY: Oxford University Press.

    Google Scholar 

  • Mathsoft, Data Analysis Products Division. (1999).S-Plus 2000 programmer's guide [computer program and software manual]. Seattle, WA: Author.

    Google Scholar 

  • Mislevy, R.J. (1986). Bayes model estimation in item response models.Psychometrika, 51, 177–195.

    Google Scholar 

  • Mislevy, R.J., & Bock, R.D. (1989). A hierarchical item-response model for educational testing. In R.D. Bock (Eds.),Multilevel analysis of educational data (pp. 57–74). San Diego, CA: Academic Press.

    Google Scholar 

  • Morris, C.N. (1983). Parameteric empirical Bayes inference: Theory and applications (with discussion).Journal of the American Statistical Association, 78, 47–65.

    Google Scholar 

  • O'Hagan, A. (1995). Fractional Bayes factors for model comparison.Journal of the Royal Statistical Society, Series B, 57, 99–138.

    Google Scholar 

  • Patz, R.J., & Junker, B.W. (1999a). A straightforward approach to Markov chain Monte Carlo methods for item response models.Journal of Educational and Behavioral Statistics, 24, 146–178.

    Google Scholar 

  • Patz, R.J., & Junker, B.W. (1999b). Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses.Journal of Educational and Behavioral Statistics, 24, 342–366.

    Google Scholar 

  • Raudenbush, S.W. (1988). Educational applications of hierarchical linear models: A review.Journal of Educational Statistics, 13, 85–116.

    Google Scholar 

  • Roberts, G.O., & Sahu, S.K. (1997). Updating schemes, correlation structure, blocking and parametrization for the Gibbs sampler.Journal of the Royal Statistical Society, Series B, 59, 291–317.

    Google Scholar 

  • Rubin, D.B. (1981). Estimation in parallel randomized experiments.Journal of Educational Statistics, 6, 377–400.

    Google Scholar 

  • Seltzer, M.H. (1993). Sensitivity analysis for fixed effects in the hierarchical model: A Gibbs sampling approach.Journal of Educational Statistics, 18, 207–235.

    Google Scholar 

  • Seltzer, M.H., Wong, W.H., & Bryk, A.S. (1996). Bayesian analysis in applications of hierarchical models: Issues and methods.Journal of Educational and Behavioral Statistics, 21, 131–167.

    Google Scholar 

  • Wainer, H., Bradlow, E.T., & Du, Z. (2000). Testlet response theory: An analog for the 3pl model useful in testlet-based adaptive testing. In W.J. van der Linden & C.A.W. Glas (Eds.),Computerized adaptive testing: Theory and practice (pp. 245–269). Boston, MA: Kluwer Academic Publishers.

    Google Scholar 

  • Wei, G.C.G., & Tanner, M.A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's Data Augmentation algorithms.Journal of the American Statistical Association, 85, 699–704.

    Google Scholar 

  • Zimowski, M.F., Muraki, E., Mislevy, R.J., & Bock, R.D. (1996).Bilog MG, multiple-group IRT analysis and test maintenance for binary items. Chicago, IL: Scientific Software International.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, JP., Glas, C.A.W. Bayesian estimation of a multilevel IRT model using gibbs sampling. Psychometrika 66, 271–288 (2001). https://doi.org/10.1007/BF02294839

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294839

Key words

Navigation