Psychometrika

, Volume 62, Issue 4, pp 495–523 | Cite as

Tail-measurability in monotone latent variable models

  • Jules L. Ellis
  • Brian W. Junker
Article

Abstract

We consider latent variable models for an infinite sequence (or universe) of manifest (observable) variables that may be discrete, continuous or some combination of these. The main theorem is a general characterization by empirical conditions of when it is possible to construct latent variable models that satisfy unidimensionality, monotonicity, conditional independence, andtail-measurability. Tail-measurability means that the latent variable can be estimated consistently from the sequence of manifest variables even though an arbitrary finite subsequence has been removed. The characterizing,necessary and sufficient, conditions that the manifest variables must satisfy for these models are conditional association and vanishing conditional dependence (as one conditions upon successively more other manifest variables). Our main theorem considerably generalizes and sharpens earlier results of Ellis and van den Wollenberg (1993), Holland and Rosenbaum (1986), and Junker (1993). It is also related to the work of Stout (1990).

The main theorem is preceded by many results for latent variable modelsin general—not necessarily unidimensional and monotone. They pertain to the uniqueness of latent variables and are connected with the conditional independence theorem of Suppes and Zanotti (1981). We discuss new definitions of the concepts of “true-score” and “subpopulation,” which generalize these notions from the “stochastic subject,” “random sampling,” and “domain sampling” formulations of latent variable models (e.g., Holland, 1990; Lord & Novick, 1968). These definitions do not require the a priori specification of a latent variable model.

Key words

unidimensionality latent variable models tail-measurable conditional independence conditional association monotonicity vanishing conditional dependence consistency true-score variable subpopulation subtail-measurable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrich, D. (1978). A rating formulation for ordered response categories.Psychometrika, 43, 561–573.Google Scholar
  2. Billingsley, P. (1986).Probability and measure. New York: Wiley.Google Scholar
  3. Byrne, B. M. (1989). Multigroup comparisons and the assessment of equivalent construct validity across groups: Methodological and substantive issues.Multivariate Behavioral Research, 24, 503–523.Google Scholar
  4. Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972).The dependability of behavioral measurements: Theory of generalizability for scores and profiles. New York: Wiley.Google Scholar
  5. Ellis, J. L. (1993). Subpopulation invariance of patterns in covariance matrices.British Journal of Mathematical and Statistical Psychology, 46, 231–254.Google Scholar
  6. Ellis, J. L., & van den Wollenberg, A. L. (1993). Local homogeneity in latent trait models. A characterization of the homogeneous monotone IRT model.Psychometrika, 58, 417–429.Google Scholar
  7. Esary, J. D., Proschan, F., & Walkup, D. W. (1967). Association of random variables, with applications.Annals of Mathematical Statistics, 38, 1466–1474.Google Scholar
  8. Fischer, G. H. (1974).Einfuhrung in die Theorie psychologischer Tests [Introduction to mental test theory]. Bern: Huber.Google Scholar
  9. Fischer, G. H. (1987). Applying the principles of specific objectivity and of generalizability to the measurement of change.Psychometrika, 52, 565–587.Google Scholar
  10. Fischer, G. H. (1995). Derivations of the Rasch model. In G. H. Fischer & I. W. Molenaar, (Eds.),Rasch models. Foundations, recent developments and applications (pp. 15–38). New York: Springer-Verlag.Google Scholar
  11. Grayson, D. A. (1988). Two-group classification in latent trait theory: Scores with monotone likelihood ratio.Psychometrika, 53, 383–392.Google Scholar
  12. Grayson, D. A. (1990). Selection effects and unidimensionality in item response theory.British Journal of Mathematical and Statistical Psychology, 43, 207–216.Google Scholar
  13. Guttman, L. (1945). A basis for analyzing test-retest reliability.Psychometrika, 10, 255–282.Google Scholar
  14. Guttman, L. (1953). Image theory for the structure of quantitative variates.Psychometrika, 18, 227–296.Google Scholar
  15. Holland, P. W. (1981). When are item response models consistent with observed data?Psychometrika, 46, 79–92.Google Scholar
  16. Holland, P. W. (1990). On the sampling theory foundations of item response theory models.Psychometrika, 55, 577–601.Google Scholar
  17. Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in monotonc latent variable models.The Annals of Statistics, 14, 1523–1543.Google Scholar
  18. Junker, B. W. (1991). Essential independence and likelihood-based ability estimation for polytomous items.Psychometrika, 56, 255–278.Google Scholar
  19. Junker, B. W. (1993). Conditional association, essential independence, and monotone unidimensional item response models.Annals of Statistics, 21, 1359–1378.Google Scholar
  20. Junker, B. W., & Ellis, J. L. (1997).A characterization of monotone unidimensional latent variable models.Annals of Statistics, 25, 1327–1343.Google Scholar
  21. Kaiser, H., & Caffrey, J. (1965). Alpha factor analysis.Psychometrika, 30, 1–14.Google Scholar
  22. Kingman, J. F. C. (1978). Uses of exchangeability.Annals of Probability, 6, 183–197.Google Scholar
  23. Lazarsfeld, P. F. (1959). Latent structure analysis. In S. Koch (Ed.),Psychology: A study of science, Vol. 3 (pp. 476–543). New York: McGraw Hill.Google Scholar
  24. Lazarsfeld, P. F., & Henry, N. W. (1968).Latent structure analysis. Boston: Houghton Mifflin.Google Scholar
  25. Lehmann, E. L. (1986).Testing statistical hypotheses. New York: Wiley.Google Scholar
  26. Lord, F. M. (1980).Applications of item response theory to practical testing problems. Hillsdale, NJ: Erlbaum.Google Scholar
  27. Lord, F. M., & Novick, M. R. (1968).Statistical theories of mental test scores. Reading, MA: Addison-Wesley.Google Scholar
  28. McDonald, R. P. (1977). The indeterminacy of components and the definition of common factors.British Journal of Mathematical and Statistical Psychology, 30, 165–176.Google Scholar
  29. McDonald, R. P. (1981). The dimensionality of tests and items.British Journal of Mathematical and Statistical Psychology, 34, 100–117.Google Scholar
  30. McDonald, R. P., & Mulaik, S. A. (1979). Determinacy of common factors: A nontechnical review.Psychological Bulletin, 86, 297–306.Google Scholar
  31. Mellenbergh, G. J. (1989). Item bias and item response theory.International Journal of Educational Research, 13, 127–143.Google Scholar
  32. Meredith, W., & Millsap, R. E. (1992). On the misuse of manifest variables in the detection of measurement bias.Psychometrika, 57, 289–311.Google Scholar
  33. Mokken, R. J. (1971).A theory and procedure of scale-analysis. The Hague: Mouton.Google Scholar
  34. Mood, A. M., Graybill, F. A., & Boes, D. C. (1974).Introduction to the theory of statistics. New York: McGraw-Hill.Google Scholar
  35. Mulaik, S. A., & McDonald, R. P. (1978). The effect of additional variables on factor indeterminacy in models with a single common factor.Psychometrika, 43, 177–192.Google Scholar
  36. Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation.Psychometrika, 56, 611–630.Google Scholar
  37. Rasch, G. (1960).Probabilistic models for some intelligence and attainment tests. Copenhagen: Nielson & Lydiche.Google Scholar
  38. Rasch, G. (1977). On specific objectivity: An attempt at formalizing the request for generality and validity of scientific statements. In M. Blegvad (Ed.),The Danish yearbook of philosophy. Copenhagen: Munksgaard.Google Scholar
  39. Rosenbaum, P. R. (1984). Testing the conditional independence and monotonicity assumptions of item response theory.Psychometrika, 49, 425–435.Google Scholar
  40. Roskam, E. E., & Jansen, P. G. W. (1984). A new derivation of the Rasch model. In E. Degreef & J. Van Buggenhaut (Eds),Trends in mathematical psychology. Amsterdam: Elsevier.Google Scholar
  41. Rozenboom, W. W. (1988). Factor indeterminacy: The saga continues.British Journal of Mathematical and Statistical Psychology, 41, 209–226.Google Scholar
  42. Schervish, M. J. (1995).Theory of statistics. New York: Springer-Verlag.Google Scholar
  43. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects.Science, 171, 701–703.Google Scholar
  44. Sijtsma, K. (1988).Contributions to Mokken's nonparametric item response theory. Amsterdam: Free University Press.Google Scholar
  45. Steiger, J. H. (1979). Factor indeterminacy in the 1930's and the 1970's some interesting parallels.Psychometrika, 44, 157–167.Google Scholar
  46. Stout, W. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation.Psychometrika, 55, 293–325.Google Scholar
  47. Suppes, P., & Zanotti, M. (1981). When are probabilistic explanations possible?Synthese, 48, 191–199.Google Scholar
  48. Thurstone, L. L. (1957).Multiple-factor analysis. Chicago: University of Chicago Press.Google Scholar
  49. Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis.Psychometrika, 31, 279–311.Google Scholar
  50. Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory.Psychometrika, 54, 427–250.Google Scholar

Copyright information

© The Psychometric Society 1997

Authors and Affiliations

  • Jules L. Ellis
    • 1
  • Brian W. Junker
    • 2
  1. 1.Department of Mathematical PsychologyUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Carnegie Mellon UniversityUSA

Personalised recommendations