Advertisement

Psychometrika

, Volume 54, Issue 3, pp 501–513 | Cite as

Robust multidimensional scaling

  • Ian Spence
  • Stephan Lewandowsky
Article

Abstract

A method for multidimensional scaling that is highly resistant to the effects of outliers is described. To illustrate the efficacy of the procedure, some Monte Carlo simulation results are presented. The method is shown to perform well when outliers are present, even in relatively large numbers, and also to perform comparably to other approaches when no outliers are present.

Key words

multidimensional scaling robust estimation outliers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edwards, D. R. (1986, June). Graphical artifacts in multidimensional scaling. Paper presented at a meeting of the Psychometric Society, Toronto.Google Scholar
  2. Heiser, W. J. (1987, July). Multidimensional scaling with least absolute residuals. Presented at the First Conference of the International Federation of Classification Societies, Aachen, Federal Republic of Germany.Google Scholar
  3. Huber, P. J. (1981).Robust statistics. New York: Wiley.Google Scholar
  4. IMSL (1980).IMSL library reference manual (8th ed.). Houston, TX: Author.Google Scholar
  5. Knuth, D. E. (1969).The art of computer programming: Seminumerical algorithms (Vol. 2). Reading, MA: Addison-Wesley.Google Scholar
  6. Kruskal, J. B., Young, F. W., & Seery, J. B. (1978).How to use KYST-2, a very flexible program to do multidimensional scaling and unfolding. Murray Hill, NJ: Bell Laboratories.Google Scholar
  7. Luenberger, D. G. (1984).Linear and nonlinear programming (2nd ed.). Reading, MA: Addison-Wesley.Google Scholar
  8. Mosteller, F. & Tukey, J. W. (1977).Data analysis and regression. Reading, MA: Addison-Wesley.Google Scholar
  9. Null, C. H., & Sarle, W. (1982, June). Robust multidimensional scaling. Paper presented at the Joint Meeting of the Psychometric and Classification Societies, Montreal, Canada.Google Scholar
  10. Ramsay, J. O. (1975). Solving implicit equations in psychometric data analysis.Psychometrika, 40, 337–360.Google Scholar
  11. Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional scaling.Psychometrika, 42, 241–266.Google Scholar
  12. Ramsay, J. O. (1982).Multiscale II manual (Updated 1986). Montreal: McGill University.Google Scholar
  13. Spence, I. (1972). A Monte Carlo evaluation of three nonmetric multidimensional scaling algorithms.Psychometrika, 37, 461–486.Google Scholar
  14. Spence, I. (1982, June). Robust multidimensional scaling. Paper presented at the Joint Meeting of the Psychometric and Classification Societies, Montreal, Canada.Google Scholar
  15. Spence, I. (1983). Monte Carlo simulation studies.Applied Psychological Measurement, 7, 405–425.Google Scholar
  16. Takane, Y., Young, F. W., & de Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features.Psychometrika, 42, 7–67.Google Scholar
  17. Torgerson, W. S. (1958).Theory and methods of scaling. New York: Wiley.Google Scholar
  18. Young, F. W. (1970). Nonmetric multidimensional scaling: Recovery of metric information.Psychometrika, 35, 455–473.Google Scholar
  19. Young, F. W., & Lewyckyj, R. (1981).ALSCAL 4 user's guide. Chapel Hill, NC: Data Analysis and Theory Associates.Google Scholar
  20. Young, G., & Householder, A. S. (1938). Discussion of a set of points in terms of their mutual distances.Psychometrika, 3, 19–21.Google Scholar
  21. Zinnes, J. L., & MacKay, D. B. (1983). Probabilistic multidimensional scaling: Complete and incomplete data.Psychometrika, 48, 27–48.Google Scholar

Copyright information

© The Psychometric Society 1989

Authors and Affiliations

  • Ian Spence
    • 1
  • Stephan Lewandowsky
    • 1
  1. 1.Department of PsychologyUniversity of TorontoTorontoCanada

Personalised recommendations