Skip to main content
Log in

Approximating a symmetric matrix

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

We examine the least squares approximationC to a symmetric matrixB, when all diagonal elements get weightw relative to all nondiagonal elements. WhenB has positivityp andC is constrained to be positive semi-definite, our main result states that, whenw≥1/2, then the rank ofC is never greater thanp, and whenw≤1/2 then the rank ofC is at leastp. For the problem of approximating a givenn×n matrix with a zero diagonal by a squared-distance matrix, it is shown that the sstress criterion leads to a similar weighted least squares solution withw=(n+2)/4; the main result remains true. Other related problems and algorithmic consequences are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Browne, M. W. (1987). The Young-Householder alogrithm and the least-squares multidimensional scaling of squared distances.Journal of Classification, 4, 175–190.

    Google Scholar 

  • Critchley, F. (1986). Dimensionality theorems in multidimensional scaling and hierarchical cluster analysis. In E. Diday, Y. Escoufier, L. Lebart, J. Lepage, Y. Schektman, & R. Tomassone (Eds.),Informatics, IV (pp. 85–110). Ansterdam: North-Holland.

    Google Scholar 

  • de Leeuw, J. (1975). An alternating least squares approach to squared distance scaling. Unpublished manuscript, University of Leiden, Department of Data Theory.

  • de Leeuw, J., & Heiser, W. (1982). Theory of multidimensional scaling. In: P. R. Krishnaish, & L. N. Kanal (Eds.),Handbook of statistics, Volume 2, Classification pattern recognition and reduction of dimensionality (pp. 285–316). Amsterdam: North-Holland.

    Google Scholar 

  • Dijkstra, T. K. (1990). Some properties estimated scale invariant covariance structures.Psychometrika, 55, 327–336.

    Google Scholar 

  • Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank.Psychometrika, 1, 211–218.

    Google Scholar 

  • Gower, J. C. (1977). The analysis of asymmetry and orthogonality. In J. R. Barra, F. Brodeau, G. Romier, & B. van Cutsem (Eds.),Recent developments in statistics (pp. 109–123). Amsterdam: North-Holland.

    Google Scholar 

  • Gower, J. C. (1982). Euclidean distance geometry.The Mathematical Scientist, 7, 1–14.

    Google Scholar 

  • Gower, J. C. (1984). Distance matrices and their Euclidean approximation. In E. Diday, M. Jambu, L. Lebart, J. Pagès, & R. Tomassone (Eds.),Data analysis and informatics, III (pp 3–21). Amsterdam: North-Holland.

    Google Scholar 

  • Kreider, D. L., Kuller, R. G., Ostberg, D. R., & Perkins, F. W. (1966).An introduction to linear analysis. Reading, MA: Addison Wesley.

    Google Scholar 

  • Takane, Y. (1977). On the relations among four methods of multidimensional scaling.Behaviormetrika, 4, 29–43.

    Google Scholar 

  • Takane, Y., Young, F., & de Leeuw, J. (1976). Nonmetric individual differences multidimensional scaling: an alternative least squares method with optimal scaling features.Psychometria, 42, 7–67.

    Google Scholar 

  • Wilkinson, J. H. (1965).The algebraic eigenvalue problem. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, R.A., Gower, J.C. Approximating a symmetric matrix. Psychometrika 55, 665–675 (1990). https://doi.org/10.1007/BF02294615

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294615

Key words

Navigation