Skip to main content
Log in

A thurstonian pairwise choice model with univariate and multivariate spline transformations

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A probabilistic choice model is developed for paired comparisons data about psychophysical stimuli. The model is based on Thurstone's Law of Comparative Judgment Case V and assumes that each stimulus is measured on a small number of physical variables. The utility of a stimulus is related to its values on the physical variables either by means of an additive univariate spline model or by means of multivariate spline model. In the additive univariate spline model, a separate univariate spline transformation is estimated for each physical dimension and the utility of a stimulus is assumed to be an additive combination of these transformed values. In the multivariate spline model, the utility of a stimulus is assumed to be a general multivariate spline function in the physical variables. The use of B splines for estimating the transformation functions is discussed and it is shown how B splines can be generalized to the multivariate case by using as basis functions tensor products of the univariate basis functions. A maximum likelihood estimation procedure for the Thurstone Case V model with spline transformation is described and applied for illustrative purposes to various artificial and real data sets. Finally, the model is extended using a latent class approach to the case where there are unreplicated paired comparisons data from a relatively large number of subjects drawn from a heterogeneous population. An EM algorithm for estimating the parameters in this extended model is outlined and illustrated on some real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitkin, M., Anderson, D., & Hinde, J. (1981), Statistical modelling of data on teaching styles.Journal of the Royal Statistical Society, Series A, 144, 419–461.

    Google Scholar 

  • Akaike, H. (1977). On entropy maximization. In P. R. Krishnaiah (Ed.),Applications of statistics (pp. 27–41). Amsterdam: North-Holland.

    Google Scholar 

  • Bacchetti, P. (1989). Additive isotonic models.Journal of the American Statistical Association, 84, 289–294.

    Google Scholar 

  • Bloxom, B. (1972). The simplex in pair comparisons.Psychometrika, 37, 119–136.

    Google Scholar 

  • Bloxom, B. (1985). A constrained spline estimator of a hazard function.Psychometrika, 50, 301–321.

    Google Scholar 

  • Bock, R. D., & Jones, L. V. (1968).The measurement and prediction of judgment and choice. San Francisco: Holden-Day.

    Google Scholar 

  • Böckenholt, U., & Böckenholt, I. (1990). Modeling individual differences in unfolding preference data: A restricted latent class approach.Applied Psychological Measurement, 14, 257–269.

    Google Scholar 

  • Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions.Psychometrika, 52, 345–370.

    Google Scholar 

  • Breiman, L. (1991). The II method for estimating multivariate functions from noisy data.Technometrics, 33, 125–160.

    Google Scholar 

  • Breiman, L., & Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation.Journal of the American Statistical Association, 80, 580–619.

    Google Scholar 

  • Curry, H. B., & Schoenberg, I. J. (1947). On spline distribution functions and their limits: The Pólya frequency distribution functions.Bulletin of the American Mathematical Society, 53 (Abstract 380), 1114.

    Google Scholar 

  • David, H. A. (1988).The method of paired comparisons (2nd ed.). London: Griffin.

    Google Scholar 

  • de Boor, C. (1978).A practical guide to splines. New York: Springer-Verlag.

    Google Scholar 

  • Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm.Journal of the Royal Statistical Society, Series B, 39, 1–38.

    Google Scholar 

  • De Soete, G. (1990). A latent class approach to modeling pairwise preferential choice data. In M. Schader & W. Gaul (Eds.),Knowledge, data and computer-assisted decisions (pp. 103–113). Berlin: Springer-Verlag.

    Google Scholar 

  • De Soete, G., & Carroll, J. D. (1983). A maximum likelihood method for fitting the wandering vector model.Psychometrika, 48, 553–566.

    Google Scholar 

  • De Soete, G., & Carroll, J. D. (1992), Probabilistic multidimensional models of pairwise choice data. In F. G. Ashby (Ed.),Multidimensional models of perception and cognition (pp. 61–88). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • De Soete, G., Carroll, J. D. & DeSarbo, W. S. (1986). The wandering ideal point model: A probabilistic multidimensional unfolding model for paired comparisons data.Journal of Mathematical Psychology, 30, 28–41.

    Google Scholar 

  • De Soete, G., & DeSarbo, W. S. (1991). A latent class probit model for analyzing pick any/N data.Journal of Classification, 8, 45–63.

    Google Scholar 

  • Formann, A. K. (1989). Constrained latent class models: Some further applications.British Journal of Mathematical and Statistical Psychology, 42, 37–54.

    Google Scholar 

  • Friedman, J. H. (1991). Multivariate adaptive regression splines.Annals of Statistics, 19, 1–141.

    Google Scholar 

  • Friedman, J. H., & Stuetzle, W. (1981). Projection pursuit regression.Journal of the American Statistical Association, 76, 817–823.

    Google Scholar 

  • Gill, P. E., & Murray, W. (1974).Safeguarded steplength algorithms for optimization using descent methods (NPL Report NAC 37). Teddington, England: National Physical Laboratory.

    Google Scholar 

  • Hastie, T., & Tibshirani, R. (1986). Generalized additive models.Statistical Science, 1, 297–318.

    Google Scholar 

  • Hastie, T., & Tibshirani, R. (1987). Generalized additive models: Some applications.Journal of the American Statistical Association, 82, 371–386.

    Google Scholar 

  • Hope, A. C. (1968). A simplified Monte Carlo significance test procedure.Journal of the Royal Statistical Society, Series B, 30, 582–598.

    Google Scholar 

  • Khuri, A. I., & Cornell, J. A. (1987).Response surfaces. New York: Marcel Dekker.

    Google Scholar 

  • Lazarsfeld, P. F., & Henry, R. W. (1968).Latent structure analysis. New York: Houghton Mifflin.

    Google Scholar 

  • McLachlan, G. J., & Basford, K. E. (1988).Mixture models. New York: Marcel Dekker.

    Google Scholar 

  • Nelder, J. A., & Wedderburn, R. (1972). Generalized linear models.Journal of the Royal Statistical Society, Series A, 135, 370–384.

    Google Scholar 

  • Ramsay, J. O. (1978). Confidence regions for multidimensional scaling analysis.Psychometrika, 43, 145–160.

    Google Scholar 

  • Ramsay, J. O. (1988). Monotone regression splines in action.Statistical Science, 3, 425–461.

    Google Scholar 

  • Schwarz, G. (1978). Estimating the dimensions of a model.Annals of Statistics, 6, 461–464.

    Google Scholar 

  • Takane, Y. (1980). Maximum likelihood estimation in the generalized case of Thurstone's model of comparative judgment.Japanese Psychological Research, 22, 188–196.

    Google Scholar 

  • Takane, Y. (1989). Analysis of covariance structures and probabilistic binary choice data. In G. De Soete, H. Feger, & K. C. Klauer (Eds.),New developments in psychological choice modeling (pp. 139–160). Amsterdam: North-Holland.

    Google Scholar 

  • Thurstone, L. L. (1927). A law of comparative judgment.Psychological Review, 34, 273–286.

    Google Scholar 

  • Wahba, G., & Wold, S. (1987). A completely automatic French curve: Fitting spline functions by cross-validation.Communications in Statistics, Part A—Theory and Methods, 4, 1–7.

    Google Scholar 

  • Winsberg, S. (1988). Two techniques: Monotone spline transformations for dimension reduction in PCA and easy-to-generate metrics for PCA of sampled functions. In J. L. A. van Rijckevorsel & J. de Leeuw (Eds.),Component and correspondence analysis (pp. 115–135). London: Wiley.

    Google Scholar 

  • Winsberg, S., & Carroll, J. D. (1988). A quasi-nonmetric method for multidimensional scaling via an extended Euclidean model.Psychometrika, 54, 217–229.

    Google Scholar 

  • Winsberg, S., & Ramsay, J. O. (1980). Monotonic transformations to additivity using splines.Biometrika, 67, 669–674.

    Google Scholar 

  • Winsberg, S., & Ramsay, J. O. (1981). Analysis of pairwise transformations to additivity using integratedB-splines.Psychometrika, 46, 171–186.

    Google Scholar 

  • Winsberg, S., & Ramsay, J. O. (1983). Monotone spline transformations for dimension reduction.Psychometrika, 48, 575–595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author is supported as “Bevoegdverklaard Navorser” of the Belgian “Nationaal Fonds voor Wetenschappelijk Onderzoek”. The authors are indebted to Ulf Böckenholt and Yoshio Takane for useful comments on an earlier draft of this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Soete, G., Winsberg, S. A thurstonian pairwise choice model with univariate and multivariate spline transformations. Psychometrika 58, 233–256 (1993). https://doi.org/10.1007/BF02294575

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294575

Key words

Navigation