# Ordinal consistency and ordinal true scores

- 119 Downloads
- 11 Citations

## Abstract

This paper argues that test data are ordinal, that latent trait scores are only determined ordinally, and that test data are used largely for ordinal purposes. Therefore it is desirable to develop a test theory based only on ordinal assumptions. A set of ordinal assumptions is presented, including an ordinal version of local independence. From these assumptions it is first shown that the gamma-correlation between two tests is the product of their gamma-correlations with the true latent order. The theory is generalized to allow for heterogeneous tests by defining a weighted average local independence. The tau-correlations between total score and the latent order can be found in both homogeneous and heterogeneous cases, and a system of differential item weighting to maximize the tau-correlation between weighted items and the latent order is provided. Thus a purely ordinal test theory seems possible.

## Key words

test theory ordinal regression local independence reliability## Preview

Unable to display preview. Download preview PDF.

## References

- Andersen, E. B. (1973). Conditional inference for multiple choice questionnaires.
*British Journal of Mathematical and Statistical Psychology, 26*, 42–54.Google Scholar - Bartholomew, D. J. (1984). The foundations of factor analysis.
*Biometrika, 71*, 221–232.Google Scholar - Bartholomew, D. J. (1985). Foundations of factor analysis: Some practical implications.
*British Journal of Mathematical and Statistical Psychology, 38*, 127–137.Google Scholar - Birnbaum, A. (1968). Some latent trait models and their uses in inferring an examinee's ability. In F. M. Lord & M. R. Novick,
*Statistical theories of mental test scores*(pp. 397–472). Reading, MA: Addison, Wesley.Google Scholar - Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm.
*Psychometrika, 46*, 443–459.Google Scholar - Cliff, N. (1977). A theory of consistency of ordering generalizable to tailored testing.
*Psychometrika, 42*, 373–393.Google Scholar - Cliff, N. (1979). Test theory without true scores?
*Psychometrika, 44*, 373–393.Google Scholar - Douglas, G. A., & Wright, B. D. (1968).
*The two category model for objective measurment*. Chicago: University of Chicago, Department of Education Multilith report.Google Scholar - Gans, L. P., & Robertson, C. A. (1981). Distributions of Goodman and Kruskal's gamma and Spearman's rho in 2 × 2 tables for small and moderate sample sizes.
*Journal of the American Statistical Association, 76*, 942–946.Google Scholar - Goodman, L., & Kruskal, W. B. (1955). Measures of association for crossclassifications.
*Journal of the American Statistical Association, 49*, 732–764.Google Scholar - Green, B. F. (1976). Comments on computers in testing. In C. L. Clark (Ed.),
*Proceedings of the First Conference on Computerized Adaptive Testing*(U.S. Civil Service Commission Personal & Development Center PS 75-6). Washington, DC: U.S. Government Printing Office. (Superintendent of Documents Stock No. 006-00940-9)Google Scholar - Guttman, L. (1950). The basis for scalogram analysis. In S. A. Stouffer (Ed.),
*Measurement and prediction*. Princeton, NJ: Princeton University.Google Scholar - Guttman, L. (1971). Measurement as structural theory.
*Psychometrika, 36*, 329–347.Google Scholar - Hubert, L. J. (1985). Combinatorial data analysis: Association and partial association.
*Psychometrika, 59*, 449–467.Google Scholar - Humphreys, L. G. (1956). The normal curve and the attenuation paradox in test theory.
*Psychological Bulletin, 53*, 472–476.Google Scholar - Keats, J. A. (1951).
*A statistical theory of mental test scores*. Melbourne: Australian Council for Educational Research.Google Scholar - Kendall, M. G. (1970).
*Rank correlation methods*(3rd ed.). New York: Hafner.Google Scholar - Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971).
*Foundations of measurement*. New York: Academic Press.Google Scholar - Lazarsfeld, P. F. (1950a). The logical and mathematical foundation of latent structural analysis. In S. A. Stouffer (Ed.),
*Measurement and prediction*(pp. 362–412). Princeton, NJ: Princeton University.Google Scholar - Lazarsfeld, P. F. (1950b). The interpretation and computation of some latent structures. In S. A. Stouffer (Ed.),
*Measurement and prediction*(pp. 413–473). Princeton, NJ: Princeton University.Google Scholar - Lazarsfeld, P. F., & Henry, N. W. (1968).
*Latent structure analysis*. New York: Houghton Mifflin.Google Scholar - Levine, M. V. (1970). Transformations that render curves parallel.
*Journal of Mathematical Psychology, 7*, 410–443.Google Scholar - Loevinger, J. A. (1947). A systematic approach to the construction and evaluation of tests of ability.
*Psychological Monographs, 61*, (4, Whole No. 285).Google Scholar - Loevinger, J. A. (1948). A technique of homogeneous test evaluation compared with some aspects of “scale analysis”.
*Psychological Bulletin, 45*, 507–529.Google Scholar - Lord, F. M., & Novick, M. R. (1968).
*Statistical theories of mental test scores*. Reading, MA: Addison, Wesley.Google Scholar - Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint measurement: A new type of fundamental measurement.
*Journal of Mathematical Psychology, 1*, 1–27.Google Scholar - Mokken, R. J. (1971).
*A theory and procedure of scale analysis*. Hawthorne, NY: Mouton & Co.Google Scholar - Mokken, R. J., & Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses.
*Applied Psychological Measurement, 6*, 417–430.Google Scholar - Mokken, R. J., Lewis, C., & Sÿtsma, K. (1986). Rejoinder to: “The Mokken Scale: A critical discussion.”
*Applied Psychological Measurement, 10*, 229–285.Google Scholar - Novick, M. R., & Lewis, C. (1967). Coefficient alpha and the reliability of composite measurements.
*Psychometrika, 32*, 1–4.Google Scholar - Puri, M. L., & Sen, P. K. (1985),
*Nonparametric methods in general linear models*. New York: Wiley.Google Scholar - Rasch, G. (1980).
*Probabilistic models for some intelligence and attainment tests*. Chicago: University of Chicago Press. (Reprint, with a Foreword and Afterword by Benjamin D. Wright)Google Scholar - Reynolds, T. J., & Suttrick, K. H. (1986). Assessing the correspondence of a vector to a symmetric matrix using ordinal regression.
*Psychometrika 51*, 101–112.Google Scholar - Roskam, E. E., & Jansen, P. G. W. (1984). A new derivation of the Rasch model. In E. Degreef & J. van Buggenhaut (Eds.),
*Trends in mathematical psychology*(pp. 293–307). Amsterdam: Elsevier Science Publishers.Google Scholar - Roskam, E. E., van den Wollenberg, A. L., & Jansen, P. G. W. (1986). The Mokken Scale: A critical discussion.
*Applied Psychological Measurement, 10*, 267–277.Google Scholar - Schulman, R. S. (1976). Correlation and prediction in ordinal test theory.
*Psychometrika, 41*, 329–340.Google Scholar - Schulman, R. S., & Haden, R. L. (1975). A test theory for ordinal measurements.
*Psychometrika, 40*, 455–472.Google Scholar - Shepard, R. N. (1962). The analysis of proximities: Multidimensional scaling with an unknown distance function.
*Psychometrika, 27*, 219–246.Google Scholar - Smith, R. B. (1974). Continuities in ordinal path analysis.
*Social forces, 53*, 229–246.Google Scholar - Somers, R. H. (1962). A new asymmetric measure of association for ordinal variables.
*American Sociological Review, 27*, 799–811.Google Scholar