Skip to main content

Nonparametric goodness-of-fit tests for the rasch model

Abstract

A Monte Carlo algorithm realizing a family of nonparametric tests for the Rasch model is introduced which are conditional on the item and subject marginals. The algorithm is based on random changes of elements of data matrices without changing the marginals; most powerful tests against all alternative hypotheses are given for which a monotone characteristic may be computed from the data matrix; alternatives may also be composed. Computation times are long, but exactp-values are approximated with the quality of approximation only depending on calculation time, but not on the number of persons. The power and the flexibility of the procedure is demonstrated by means of an empirical example where, among others, indicators for increased item similarities, the existence of subscales, violations of sufficiency of the raw score as well as learning processes were found. Many of the features described are implemented in the program T-Rasch 1.0 by Ponocny and Ponocny-Seliger (1999).

This is a preview of subscription content, access via your institution.

References

  • Andersen, E.B. (1973). A goodness of fit test for the Rasch model.Psychometrika, 38, 123–140.

    Google Scholar 

  • Andersen, E.B. (1980).Discrete statistical models with social science applications. Amsterdam: North-Holland Publishing.

    Google Scholar 

  • Békéssy, A., Békéssy, P., & Komlós, J. (1972). Asymptotic enumeration of regular matrices.Studia Scientiarum Mathematicarum Hungarica, 7, 343–353.

    Google Scholar 

  • Bents, R & Blank, R. (1991).Der Myers-Briggs Typenindikator (MBTI) [The Myers-Briggs type indicator]. Weinheim: Beltz. (In German)

    Google Scholar 

  • Bukasa, B., & Wenninger, U. (1998). MAT.Nonverbaler Intelligenztest Testmanual [MAT. Nonverbal test of intelligence. Test manual]. Wien: Kuratorium für Verkehrssicherheit, Institut für Verkehrspsychologie. (In German)

    Google Scholar 

  • Cressie, N., & Holland, P.W. (1983). Characterizing the manifest probabilities of latent trait models.Psychometrika, 48, 129–141.

    Google Scholar 

  • Fischer, G.H. (1974).Einführung in die Theorie psychologischer Tests [Introduction to mental test theory]. Berne: Huber.

    Google Scholar 

  • Fischer, G.H. (1981). On the existence and uniqueness of maximum likelihood estimates in the Rasch model.Psychometrika, 46, 59–77.

    Google Scholar 

  • Fischer, G.H. (1993). Notes on the Mantel-Haenszel procedure and another chi-squared test for the assessment of DIF.Methodika, 7, 88–100.

    Google Scholar 

  • Fischer, G.H. (1995). Some neglected problems in IRT.Psychometrika, 60, 449–487.

    Google Scholar 

  • Fischer, G.H., & Molenaar, I.W. (Eds.). (1995).Rasch models. Foundations, recent developments, and applications. New York, NY: Springer.

    Google Scholar 

  • Folks, J.L. (1984). Combination of independent tests. In P.R. Krishnaiah & P.K. Sen (Eds.),Handbooks of statistics, Vol. 4 (pp. 113–121). Amsterdam: North Holland.

    Google Scholar 

  • Formann, A.K. (1979).WMT. Wiener Matrizen-Test. Ein Rasch-skalierter sprachfreier Intelligenztest [WMT. Viennese matrices test. A Rasch-scaled non-verbal test for intelligence]. Weinheim: Beltz. (In German)

    Google Scholar 

  • Glas, C.A.W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution.Psychometrika, 53, 525–546.

    Google Scholar 

  • Glas, C.A.W. (1999). Modification indices for the 2-PL and the nominal response model.Psychometrika, 64, 273–294.

    Google Scholar 

  • Glas, C.A.W., & Verhelst, N.D. (1995). Testing the Rasch model. In G.H. Fischer & I.W. Molenaar (Eds.),Rasch models. Foundations, recent developments, and applications (pp. 37–51). New York, NY: Springer-Verlag.

    Google Scholar 

  • Jannarone, R.J. (1986). Conjunctive item response theory kernels.Psychometrika, 51, 357–373.

    Google Scholar 

  • Kelderman, H. (1984). Loglinear Rasch model tests.Psychometrika, 49, 223–245.

    Google Scholar 

  • Klauer, K.C. (1991). An exact and optimal standardized person test for assessing consistency with the Rasch model.Psychometrika, 56, 213–228.

    Google Scholar 

  • Klauer, K.C. (1995). The assessment of person fit. In G.H. Fischer & I.W. Molenaar (Eds.),Rasch models. Foundations, recent developments, and applications (pp. 37–51). New York, NY: Springer-Verlag.

    Google Scholar 

  • Ledermann, W., & Vajda, S. (Eds.). (1980).Handbook of applicable mathematics, Vol. I: Algebra. Chichester, U.K.: Wiley.

    Google Scholar 

  • Lehmann, E.L. (1986).Testing statistical hypotheses. New York, NY: Wiley.

    Google Scholar 

  • Li, M.F., & Olejnik, S. (1997). The power of Rasch person-fit statistics in detecting unusual response patterns.Applied Psychological Measurement, 21, 215–231.

    Google Scholar 

  • Molenaar, I.W. (1983). Some improved diagnostics for failure in the Rasch model.Psychometrika, 48, 49–72.

    Google Scholar 

  • Molenaar, I.W. (1995). Estimation of item parameters. In G.H. Fischer & I.W. Molenaar (Eds.),Rasch models. Foundations, recent developments, and applications (pp. 37–51). New York, NY: Springer-Verlag.

    Google Scholar 

  • Neyman, J., & Pearson, E.S. (1933). On the problem of the most efficient tests of statistical hypotheses.Philosophical Transactions of the Royal Society, Series A, 231, 289–337.

    Google Scholar 

  • Ponocny, I. (1996).Kombinatorische Modelltests für das Rasch-Modell [Combinatorial goodness-of-fit tests for the Rasch model]. Unpublished doctoral dissertation, University of Vienna, Austria.

    Google Scholar 

  • Ponocny, I. (2000). Exact person fit-indexes for the Rasch model.Psychometrika, 65, 29–42.

    Google Scholar 

  • Ponocny, I., & Ponocny-Seliger, E. (1999).T-Rasch 1.0. Groningen: ProGAMMA.

    Google Scholar 

  • Prabhu, N.U. (1965).Stochastic processes. Basic theory and its applications. New York, NY: Macmillan.

    Google Scholar 

  • Rao, C.R. (1973).Linear statistical inference and its applications (2nd ed.). New York, NY: Wiley.

    Google Scholar 

  • Rasch, G. (1960).Probabilistic models for some intelligence and attainment tests. Kopenhagen: Danish Institute for Educational Research.

    Google Scholar 

  • Raven, J.C. (1976).Standard progressive matrices. Oxford: Oxford Psychologists Press.

    Google Scholar 

  • Stephens, M.A. (1986). Tests for the uniform distribution. In R.B. D'Agostino & M.A. Stephens (Eds.),Goodness-of-fit techniques. New York, NY: Dekker.

    Google Scholar 

  • Verbeek, A., & Kroonenberg, P.M. (1985). A survey of algorithms for exact distributions of test statistics inr ×c contingency tables with fixed margins.Computational Statistics & Data Analysis, 3, 159–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Ponocny.

Additional information

The author wishes to thank Alexander Kaba, Birgit Bukasa, and Ulrike Wenninger of Österreichisches Kuratorium für Verkehrssicherheit (Austrian Traffic Safety Board) for allowing a data set to be used for the empirical example, and Elisabeth Ponocny-Seliger and the reviewers for many helpful comments. The menu-driven program T-Rasch 1.0 by Ponocny and Ponocny-Seliger (1999) can be obtained from Assessment Systems Corporation (http: //www.assess.com) or from the authors. (Note that it also performs exact person fit tests.)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ponocny, I. Nonparametric goodness-of-fit tests for the rasch model. Psychometrika 66, 437–459 (2001). https://doi.org/10.1007/BF02294444

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294444

Key words

  • nonparametric tests
  • IRT
  • goodness-of-fit tests
  • Rasch model
  • exact tests