Skip to main content
Log in

The integration of multidimensional scaling and multivariate analysis with optimal transformations

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The recent history of multidimensional data analysis suggests two distinct traditions that have developed along quite different lines. In multidimensional scaling (MDS), the available data typically describe the relationships among a set of objects in terms of similarity/dissimilarity (or (pseudo-)distances). In multivariate analysis (MVA), data usually result from observation on a collection of variables over a common set of objects. This paper starts from a very general multidimensional scaling task, defined on distances between objects derived from one or more sets of multivariate data. Particular special cases of the general problem, following familiar notions from MVA, will be discussed that encompass a variety of analysis techniques, including the possible use of optimal variable transformation. Throughout, it will be noted how certain data analysis approaches are equivalent to familiar MVA solutions when particular problem specifications are combined with particular distance approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benzécri, J.-P. et al. (1973).L'analyse des données. 1. La Taxinomie. 2. L'analyse des Correspondances [Data analysis. 1. Taxonomy. 2. Correspondence analysis]. Paris: Dunod.

    Google Scholar 

  • Burt, C. (1950). The factorial analysis of qualitative data.British Journal of Psychology, Statistical Section, 3, 166–185.

    Google Scholar 

  • Carroll, J. D. (1968). Generalization of canonical correlation analysis to three or more sets of variables.Proceedings of the 76th annual convention of the American Psychological Association, 3, 227–228.

    Google Scholar 

  • Carroll, J. D., & Chang, J. J. (1972, September).IDIOSCAL (Individual differences in orientation scaling): A generalization of INDSCAL allowing IDIOsyncratic reference systems as well as an analytic approximation to INDSCAL. Paper presented at the Psychometric Society Meeting, Princeton, NJ.

  • Carroll, J. D., & Kruskal, J. B. (1968). Scaling, multidimensional. In W. H. Kruskal & J. M. Tanur (Eds.),International encyclopedia of statistics (Vol. 2, pp. 892–907). New York: The Free Press.

    Google Scholar 

  • Chambers, J. M., & Klein, B. (1982). Graphical techniques for multivariate data and for clustering. In P. R. Krisnaiah & L. N. Kanal (Eds.),Handbook of statistics (Vol. 2, pp. 209–244). Amsterdam: North-Holland.

    Google Scholar 

  • Cliff, N. (1966). Orthogonal rotation to congruence.Psychometrika, 31, 33–42.

    Google Scholar 

  • Dauxois, J., & Pousse, A. (1976).Les analyses factorielles en calcul des probabilités et en statistique: essai d'étude synthétique [Components analysis in probability and statistics: An attempt at a synthesis]. Thèse d'État, Université Paul Sabatier, Toulouse.

    Google Scholar 

  • de Leeuw, J. (1973).Canonical analysis of categorical data. Leiden: DSWO Press. (Second edition, 1984)

    Google Scholar 

  • de Leeuw, J. (1977).A normalized cone regression approach to alternating least squares algorithms. Unpublished manuscript. Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  • de Leeuw, J. (1988). Convergence of the majorization algorithm for multidimensional scaling.Journal of Classification, 5, 163–180.

    Google Scholar 

  • de Leeuw, J., & Heiser, W. J. (1980). Multidimensional scaling with restrictions on the configuration. In P. R. Krisnaiah (Ed.),Multivariate analysis (Vol. V, pp. 501–522). Amsterdam: North-Holland.

    Google Scholar 

  • de Leeuw, J., & Meulman, J. J. (1986). Principal component analysis and restricted multidimensional scaling. In W. Gaul & M. Schader (Eds.),Classification as a tool of research (pp. 83–96). Amsterdam: North-Holland.

    Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the jackknife.Annals of Statistics, 7, 1–26.

    Google Scholar 

  • Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans (CMBS-NSF regional conference series in applied mathematics, Monograph 38). Philadelphia: SIAM.

    Google Scholar 

  • Everitt, B. S. (1978).Graphical techniques for multivariate data. London: Heinemann.

    Google Scholar 

  • Fisher, R. A. (1938).Statistical methods for research workers. Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Gifi, A. (1985).PRINCALS (Research Report UG-85-02). Leiden: University of Leiden, Department of Data Theory.

    Google Scholar 

  • Gifi, A. (1990).Nonlinear multivariate analysis. Chichester: Wiley. (First edition 1981, University of Leiden, Department of Data Theory)

    Google Scholar 

  • Gower, J. C. (1966). Some distance properties of latent roots and vector methods used in multivariate analysis.Biometrika, 53, 325–338.

    Google Scholar 

  • Gower, J. C. (1967). Multivariate analysis and multidimensional geometry.The Statistician, 17, 13–28.

    Google Scholar 

  • Gower, J. C. (1968). Adding a point to vector diagrams in multivariate analysis.Biometrika, 55, 582–585.

    Google Scholar 

  • Gower, J. C., & Harding, S. A. (1988). Nonlinear biplots.Biometrika, 75, 445–455.

    Google Scholar 

  • Greenacre, M. J. (1984).Theory and applications of correspondence analysis. London: Academic Press.

    Google Scholar 

  • Guttman, L. (1941). The quantification of a class of attributes: A theory and method of scale construction. In P. Horst et al. (Eds.),The prediction of personal adjustment (pp. 319–348). New York: Social Science Research Council.

    Google Scholar 

  • Hayashi, C. (1952). On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view.Annals of the Institute of Statistical Mathematics, 2, 93–96.

    Google Scholar 

  • Heiser, W. J. (1987a). Correspondence analysis with least absolute residuals.Computational Statistics and Data Analysis, 5, 337–356.

    Google Scholar 

  • Heiser, W. J. (1987b). Joint ordination of species and sites: the unfolding technique. In P. Legendre & L. Legendre (Eds.),Developments in numerical ecology (pp. 189–221). New York: Springer.

    Google Scholar 

  • Heiser, W. J., & Meulman, J. J. (1983a). Analyzing rectangular tables by joint and constrained multidimensional scaling.Journal of Econometrics, 22, 139–167.

    Google Scholar 

  • Heiser, W. J., & Meulman, J. J. (1983b). Constrained multidimensional scaling, including confirmation.Applied Psychological Measurement, 7, 381–404.

    Google Scholar 

  • Heiser, W. J., & Meulman, J. J. (1990, June).Nonlinear biplots for nonlinear mappings. Paper presented at the XXIIème Journeés de Statistique, Tours, France.

  • Hotelling, H. (1936). Relations between two sets of variates.Biometrika, 28, 321–377.

    Google Scholar 

  • Jolliffe, I. T. (1986).Principal component analysis. New York: Springer Verlag.

    Google Scholar 

  • Kettenring, J. R. (1971). Canonical analysis of several sets of variables.Biometrika, 58, 433–460.

    Google Scholar 

  • Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 29, 1–28.

    Google Scholar 

  • Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method.Psychometrika, 29, 115–129.

    Google Scholar 

  • Kruskal, J. B. (1978). Factor analysis and principal components analysis: Bilinear methods. In W. H. Kruskal & J. M. Tanur (Eds.),International encyclopedia of statistics (pp. 307–330). New York: The Free Press.

    Google Scholar 

  • Kruskal, J. B., & Carroll, J. D. (1969). Geometrical models and badness-of-fit functions. In P. R. Krisnaiah (Ed.),Multivariate analysis (Vol. II, pp. 639–671). New York: Academic Press.

    Google Scholar 

  • Kruskal, J. B., & Shepard, R. N. (1974). A nonmetric variety of linear factor analysis.Psychometrika, 39, 123–157.

    Google Scholar 

  • Lebart, L., Morineau, A., & Warwick, K. M. (1984).Multivariate descriptive statistical analysis. New York: Wiley.

    Google Scholar 

  • Max, J. (1960). Quantizing for minimum distortion.Information Theory, 6, 7–12.

    Google Scholar 

  • Meulman, J. J. (1986).A distance approach to nonlinear multivariate analysis. Leiden: DSWO Press.

    Google Scholar 

  • Meulman, J. J. (1988). Nonlinear redundancy analysis via distances. In H. H. Bock (Ed.),Classification and related methods of data analysis (pp. 515–522). Amsterdam: North-Holland.

    Google Scholar 

  • Meulman, J. J. (1989). Distance analysis in reduced canonical spaces. In R. Coppi & S. Bolasco (Eds.),Multiway data analysis (pp. 233–244). Amsterdam: North-Holland.

    Google Scholar 

  • Meulman, J. J. (1990, December).Multivariate analysis with nonlinear transformations, nonlinear mappings, and nonlinear biplots. Paper presented at the workshop “Linear models and multivariate statistical analysis,” Oberwolfach, Germany.

  • Meulman, J. J. (1991). Principal components analysis using distances, including weights for variables and dimensions. In S. Zidak (Ed.),Proceedings of DIANA III, International Meeting on Discriminant Analysis (pp. 178–196). Prague: Czechoslovak Academy of Sciences.

    Google Scholar 

  • Meulman, J. J., & Heiser, W. J. (1988). Second order regression and distance analysis. In W. Gaul & M. Schader (Eds.),Data, expert knowledge and decisions (pp. 368–380). Berlin: Springer-Verlag.

    Google Scholar 

  • Meulman, J. J., Zeppa, P., Boon, M. E., & Rietveld, W. J. (1992). Prediction of various grades of cervical preneoplasia and neoplasia on plastic embedded cytobrush samples: Discriminant analysis with qualitative and quantitative predictors.Analytical and Quantitative Cytology and Histology, 14, 60–72.

    Google Scholar 

  • Nishisato, S. (1980).Analysis of categorical data: Dual scaling and its applications. Toronto: University of Toronto Press.

    Google Scholar 

  • Ramsay, J. O. (1989). Monotone regression splines in action.Statistical Science, 4, 425–441.

    Google Scholar 

  • Roskam, E. E. C. I. (1968).Metric analysis of ordinal data in psychology. Voorschoten: VAM.

    Google Scholar 

  • Saporta, G. (1975). Liaisons entre plusieurs ensembles de variables et codage de données qualitatives [Relationships between various sets of variables and scaling of qualitative data]. Thèse de Doct. 3e cycle, Université Paris VI, Paris.

    Google Scholar 

  • Shepard, R. N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown distance function. I.Psychometrika, 27, 125–140.

    Google Scholar 

  • Shepard, R. N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown distance function. II.Psychometrika, 27, 219–246.

    Google Scholar 

  • Shepard, R. N. (1966). Metric structures in ordinal data.Journal of Mathematical Psychology, 3, 287–315.

    Google Scholar 

  • Takane, Y., Young, F. W., & de Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features.Psychometrika, 42, 7–67.

    Google Scholar 

  • Tenenhaus, M., & Young, F. W. (1985). An anlaysis and synthesis of multiple correspondenece analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data.Psychometrika, 50, 91–119.

    Google Scholar 

  • Torgerson, W. S. (1958).Theory and methods of scaling. New York: Wiley.

    Google Scholar 

  • van de Geer, J. P. (1984). Relations among K sets of variables.Psychometrika, 49, 79–94.

    Google Scholar 

  • van de Geer, J. P. (1986).Introduction to linear multivariate data analysis (in 2 volumes). Leiden: DSWO Press.

    Google Scholar 

  • van der Burg, E. (1988).Nonlinear canonical correlation and some related techniques. Leiden: DSWO Press.

    Google Scholar 

  • van der Burg, E., & de Leeuw, J. (1983). Nonlinear canonical correlation.British Journal of Mathematical and Statistical Psychology, 36, 54–80.

    Google Scholar 

  • van der Burg, E., de Leeuw, J., & Verdegaal, R. (1988). Homogeneity analysis with k sets of variables: An alternating least squares method with optimal scaling features.Psychometrika, 53, 177–197.

    Google Scholar 

  • Weeks, D. G., & Bentler, P. M. (1979). A comparison of linear and monotone multidimensional scaling models.Psychological Bulletin, 86, 349–354.

    Google Scholar 

  • Winsberg, S., & Ramsay, J. O. (1983). Monotone spline transformations for dimension reduction.Psychometrika, 48, 575–595.

    Google Scholar 

  • Wolkowicz, H., & Styan, G. P. H. (1980). Bounds for eigenvalues using traces.Linear Algebra and its Applications, 29, 471–506.

    Google Scholar 

  • Young, F. W., Takane, Y., & de Leeuw, J. (1978). The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features.Psychometrika, 43, 279–281.

    Google Scholar 

  • Young, G., & Householder, A. S. (1938). Discussion of a set of points in terms of their mutual distances.Psychometrika, 3, 19–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the Royal Netherlands Academy of Arts and Sciences (KNAW). An earlier version of this paper was written during a stay at McGill University in Montréal; this visit was supported by a travel grant from the Netherlands Organization for Scientific Research (NWO). I am grateful to Jim Ramsay and Willem Heiser for their encouragement and helpful suggestions, and to the Editor and referees for their constructive comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meulman, J.J. The integration of multidimensional scaling and multivariate analysis with optimal transformations. Psychometrika 57, 539–565 (1992). https://doi.org/10.1007/BF02294419

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294419

Key words

Navigation