Abstract
The recent history of multidimensional data analysis suggests two distinct traditions that have developed along quite different lines. In multidimensional scaling (MDS), the available data typically describe the relationships among a set of objects in terms of similarity/dissimilarity (or (pseudo-)distances). In multivariate analysis (MVA), data usually result from observation on a collection of variables over a common set of objects. This paper starts from a very general multidimensional scaling task, defined on distances between objects derived from one or more sets of multivariate data. Particular special cases of the general problem, following familiar notions from MVA, will be discussed that encompass a variety of analysis techniques, including the possible use of optimal variable transformation. Throughout, it will be noted how certain data analysis approaches are equivalent to familiar MVA solutions when particular problem specifications are combined with particular distance approximations.
Similar content being viewed by others
References
Benzécri, J.-P. et al. (1973).L'analyse des données. 1. La Taxinomie. 2. L'analyse des Correspondances [Data analysis. 1. Taxonomy. 2. Correspondence analysis]. Paris: Dunod.
Burt, C. (1950). The factorial analysis of qualitative data.British Journal of Psychology, Statistical Section, 3, 166–185.
Carroll, J. D. (1968). Generalization of canonical correlation analysis to three or more sets of variables.Proceedings of the 76th annual convention of the American Psychological Association, 3, 227–228.
Carroll, J. D., & Chang, J. J. (1972, September).IDIOSCAL (Individual differences in orientation scaling): A generalization of INDSCAL allowing IDIOsyncratic reference systems as well as an analytic approximation to INDSCAL. Paper presented at the Psychometric Society Meeting, Princeton, NJ.
Carroll, J. D., & Kruskal, J. B. (1968). Scaling, multidimensional. In W. H. Kruskal & J. M. Tanur (Eds.),International encyclopedia of statistics (Vol. 2, pp. 892–907). New York: The Free Press.
Chambers, J. M., & Klein, B. (1982). Graphical techniques for multivariate data and for clustering. In P. R. Krisnaiah & L. N. Kanal (Eds.),Handbook of statistics (Vol. 2, pp. 209–244). Amsterdam: North-Holland.
Cliff, N. (1966). Orthogonal rotation to congruence.Psychometrika, 31, 33–42.
Dauxois, J., & Pousse, A. (1976).Les analyses factorielles en calcul des probabilités et en statistique: essai d'étude synthétique [Components analysis in probability and statistics: An attempt at a synthesis]. Thèse d'État, Université Paul Sabatier, Toulouse.
de Leeuw, J. (1973).Canonical analysis of categorical data. Leiden: DSWO Press. (Second edition, 1984)
de Leeuw, J. (1977).A normalized cone regression approach to alternating least squares algorithms. Unpublished manuscript. Leiden: University of Leiden, Department of Data Theory.
de Leeuw, J. (1988). Convergence of the majorization algorithm for multidimensional scaling.Journal of Classification, 5, 163–180.
de Leeuw, J., & Heiser, W. J. (1980). Multidimensional scaling with restrictions on the configuration. In P. R. Krisnaiah (Ed.),Multivariate analysis (Vol. V, pp. 501–522). Amsterdam: North-Holland.
de Leeuw, J., & Meulman, J. J. (1986). Principal component analysis and restricted multidimensional scaling. In W. Gaul & M. Schader (Eds.),Classification as a tool of research (pp. 83–96). Amsterdam: North-Holland.
Efron, B. (1979). Bootstrap methods: Another look at the jackknife.Annals of Statistics, 7, 1–26.
Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans (CMBS-NSF regional conference series in applied mathematics, Monograph 38). Philadelphia: SIAM.
Everitt, B. S. (1978).Graphical techniques for multivariate data. London: Heinemann.
Fisher, R. A. (1938).Statistical methods for research workers. Edinburgh: Oliver and Boyd.
Gifi, A. (1985).PRINCALS (Research Report UG-85-02). Leiden: University of Leiden, Department of Data Theory.
Gifi, A. (1990).Nonlinear multivariate analysis. Chichester: Wiley. (First edition 1981, University of Leiden, Department of Data Theory)
Gower, J. C. (1966). Some distance properties of latent roots and vector methods used in multivariate analysis.Biometrika, 53, 325–338.
Gower, J. C. (1967). Multivariate analysis and multidimensional geometry.The Statistician, 17, 13–28.
Gower, J. C. (1968). Adding a point to vector diagrams in multivariate analysis.Biometrika, 55, 582–585.
Gower, J. C., & Harding, S. A. (1988). Nonlinear biplots.Biometrika, 75, 445–455.
Greenacre, M. J. (1984).Theory and applications of correspondence analysis. London: Academic Press.
Guttman, L. (1941). The quantification of a class of attributes: A theory and method of scale construction. In P. Horst et al. (Eds.),The prediction of personal adjustment (pp. 319–348). New York: Social Science Research Council.
Hayashi, C. (1952). On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view.Annals of the Institute of Statistical Mathematics, 2, 93–96.
Heiser, W. J. (1987a). Correspondence analysis with least absolute residuals.Computational Statistics and Data Analysis, 5, 337–356.
Heiser, W. J. (1987b). Joint ordination of species and sites: the unfolding technique. In P. Legendre & L. Legendre (Eds.),Developments in numerical ecology (pp. 189–221). New York: Springer.
Heiser, W. J., & Meulman, J. J. (1983a). Analyzing rectangular tables by joint and constrained multidimensional scaling.Journal of Econometrics, 22, 139–167.
Heiser, W. J., & Meulman, J. J. (1983b). Constrained multidimensional scaling, including confirmation.Applied Psychological Measurement, 7, 381–404.
Heiser, W. J., & Meulman, J. J. (1990, June).Nonlinear biplots for nonlinear mappings. Paper presented at the XXIIème Journeés de Statistique, Tours, France.
Hotelling, H. (1936). Relations between two sets of variates.Biometrika, 28, 321–377.
Jolliffe, I. T. (1986).Principal component analysis. New York: Springer Verlag.
Kettenring, J. R. (1971). Canonical analysis of several sets of variables.Biometrika, 58, 433–460.
Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 29, 1–28.
Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method.Psychometrika, 29, 115–129.
Kruskal, J. B. (1978). Factor analysis and principal components analysis: Bilinear methods. In W. H. Kruskal & J. M. Tanur (Eds.),International encyclopedia of statistics (pp. 307–330). New York: The Free Press.
Kruskal, J. B., & Carroll, J. D. (1969). Geometrical models and badness-of-fit functions. In P. R. Krisnaiah (Ed.),Multivariate analysis (Vol. II, pp. 639–671). New York: Academic Press.
Kruskal, J. B., & Shepard, R. N. (1974). A nonmetric variety of linear factor analysis.Psychometrika, 39, 123–157.
Lebart, L., Morineau, A., & Warwick, K. M. (1984).Multivariate descriptive statistical analysis. New York: Wiley.
Max, J. (1960). Quantizing for minimum distortion.Information Theory, 6, 7–12.
Meulman, J. J. (1986).A distance approach to nonlinear multivariate analysis. Leiden: DSWO Press.
Meulman, J. J. (1988). Nonlinear redundancy analysis via distances. In H. H. Bock (Ed.),Classification and related methods of data analysis (pp. 515–522). Amsterdam: North-Holland.
Meulman, J. J. (1989). Distance analysis in reduced canonical spaces. In R. Coppi & S. Bolasco (Eds.),Multiway data analysis (pp. 233–244). Amsterdam: North-Holland.
Meulman, J. J. (1990, December).Multivariate analysis with nonlinear transformations, nonlinear mappings, and nonlinear biplots. Paper presented at the workshop “Linear models and multivariate statistical analysis,” Oberwolfach, Germany.
Meulman, J. J. (1991). Principal components analysis using distances, including weights for variables and dimensions. In S. Zidak (Ed.),Proceedings of DIANA III, International Meeting on Discriminant Analysis (pp. 178–196). Prague: Czechoslovak Academy of Sciences.
Meulman, J. J., & Heiser, W. J. (1988). Second order regression and distance analysis. In W. Gaul & M. Schader (Eds.),Data, expert knowledge and decisions (pp. 368–380). Berlin: Springer-Verlag.
Meulman, J. J., Zeppa, P., Boon, M. E., & Rietveld, W. J. (1992). Prediction of various grades of cervical preneoplasia and neoplasia on plastic embedded cytobrush samples: Discriminant analysis with qualitative and quantitative predictors.Analytical and Quantitative Cytology and Histology, 14, 60–72.
Nishisato, S. (1980).Analysis of categorical data: Dual scaling and its applications. Toronto: University of Toronto Press.
Ramsay, J. O. (1989). Monotone regression splines in action.Statistical Science, 4, 425–441.
Roskam, E. E. C. I. (1968).Metric analysis of ordinal data in psychology. Voorschoten: VAM.
Saporta, G. (1975). Liaisons entre plusieurs ensembles de variables et codage de données qualitatives [Relationships between various sets of variables and scaling of qualitative data]. Thèse de Doct. 3e cycle, Université Paris VI, Paris.
Shepard, R. N. (1962a). The analysis of proximities: Multidimensional scaling with an unknown distance function. I.Psychometrika, 27, 125–140.
Shepard, R. N. (1962b). The analysis of proximities: Multidimensional scaling with an unknown distance function. II.Psychometrika, 27, 219–246.
Shepard, R. N. (1966). Metric structures in ordinal data.Journal of Mathematical Psychology, 3, 287–315.
Takane, Y., Young, F. W., & de Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features.Psychometrika, 42, 7–67.
Tenenhaus, M., & Young, F. W. (1985). An anlaysis and synthesis of multiple correspondenece analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data.Psychometrika, 50, 91–119.
Torgerson, W. S. (1958).Theory and methods of scaling. New York: Wiley.
van de Geer, J. P. (1984). Relations among K sets of variables.Psychometrika, 49, 79–94.
van de Geer, J. P. (1986).Introduction to linear multivariate data analysis (in 2 volumes). Leiden: DSWO Press.
van der Burg, E. (1988).Nonlinear canonical correlation and some related techniques. Leiden: DSWO Press.
van der Burg, E., & de Leeuw, J. (1983). Nonlinear canonical correlation.British Journal of Mathematical and Statistical Psychology, 36, 54–80.
van der Burg, E., de Leeuw, J., & Verdegaal, R. (1988). Homogeneity analysis with k sets of variables: An alternating least squares method with optimal scaling features.Psychometrika, 53, 177–197.
Weeks, D. G., & Bentler, P. M. (1979). A comparison of linear and monotone multidimensional scaling models.Psychological Bulletin, 86, 349–354.
Winsberg, S., & Ramsay, J. O. (1983). Monotone spline transformations for dimension reduction.Psychometrika, 48, 575–595.
Wolkowicz, H., & Styan, G. P. H. (1980). Bounds for eigenvalues using traces.Linear Algebra and its Applications, 29, 471–506.
Young, F. W., Takane, Y., & de Leeuw, J. (1978). The principal components of mixed measurement level multivariate data: An alternating least squares method with optimal scaling features.Psychometrika, 43, 279–281.
Young, G., & Householder, A. S. (1938). Discussion of a set of points in terms of their mutual distances.Psychometrika, 3, 19–22.
Author information
Authors and Affiliations
Additional information
This research was supported by the Royal Netherlands Academy of Arts and Sciences (KNAW). An earlier version of this paper was written during a stay at McGill University in Montréal; this visit was supported by a travel grant from the Netherlands Organization for Scientific Research (NWO). I am grateful to Jim Ramsay and Willem Heiser for their encouragement and helpful suggestions, and to the Editor and referees for their constructive comments.
Rights and permissions
About this article
Cite this article
Meulman, J.J. The integration of multidimensional scaling and multivariate analysis with optimal transformations. Psychometrika 57, 539–565 (1992). https://doi.org/10.1007/BF02294419
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02294419