Skip to main content

ANOVA and ANCOVA of pre- and post-test, ordinal data

Abstract

With random assignment to treatments and standard assumptions, either a one-way ANOVA of post-test scores or a two-way, repeated measures ANOVA of pre- and post-test scores provides a legitimate test of the equal treatment effect null hypothesis for latent variable Θ. In an ANCOVA for pre- and post-test variablesX andY which are ordinal measures ofη and Θ, respectively, random assignment and standard assumptions ensure the legitimacy of inferences about the equality of treatment effects on latent variable Θ. Sample estimates of adjustedY treatment means are ordinal estimators of adjusted post-test means on latent variable Θ.

This is a preview of subscription content, access via your institution.

References

  1. Brunk, H. D. (1965).An introduction to mathematical statistics. Blaisdell, MA: Blaisdell.

    Google Scholar 

  2. Davison, M. L., & Sharma, A. R. (1988). Parametric statistics and levels of measurement.Psychological Bulletin, 104, 137–144.

    Google Scholar 

  3. Davison, M. L., & Sharma, A. R. (1990). Parametric statistics and levels of measurement: Factorial designs and multiple regression.Psychological Bulletin, 107, 394–400.

    Google Scholar 

  4. Huck, S. W., & McClean, R. A. (1975). Using a repeated measures ANOVA to analyze the data from a pretest-posttest design: A potentially confusing task.Psychological Bulletin, 82, 511–518.

    Google Scholar 

  5. Lord, F. M. (1967). A paradox in the interpretation of group comparisons.Psychological Bulletin, 68, 304–305.

    Google Scholar 

  6. Luce, R. D., Krantz, D. H., Suppes, P., & Tversky, A. (1990).Foundations of measurement (Vol. 3). New York: Academic Press.

    Google Scholar 

  7. Maxwell, S. E., & Delaney, H. D. (1985). Measurement scales and statistics: An examination of variable validity.Psychological Bulletin, 97, 85–93.

    Google Scholar 

  8. Mitchell, J. (1986). Measurement scales and statistics: A clash of paradigms.Psychological Bulletin, 100, 398–407.

    Google Scholar 

  9. Mosteller, F., & Tukey, J. W. (1977).Data analysis and regression: A second course in statistics. Reading, MA: Addison-Wesley.

    Google Scholar 

  10. Porter, A. C., & Raudenbush, S. W. (1987). Analysis of covariance: Its model and use in psychological research.Journal of Counseling Psychology, 34, 383–392.

    Google Scholar 

  11. Suppes, P. (1959). Measurement, empirical meaningfulness, and three-valued logic. In C. W. Churchman & P. Ratoosh (Eds.),Measurement: Definitions and theories (pp. 129–143). New York: Wiley.

    Google Scholar 

  12. Townsend, J. T., (1990). Truth and consequences of ordinal differences in statistical distributions: Toward a theory of hierarchical inference.Psychological Bulletin, 108, 551–567.

    Google Scholar 

  13. Townsend, J. T., & Ashby, F. G. (1984). Measurement scales and statistics: The misconception misconceived.Psychological Bulletin, 96, 394–401.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark L. Davison.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Davison, M.L., Sharma, A.R. ANOVA and ANCOVA of pre- and post-test, ordinal data. Psychometrika 59, 593–600 (1994). https://doi.org/10.1007/BF02294394

Download citation

Key words

  • analysis of variance
  • analysis of covariance
  • gain scores
  • ordinal data
  • parametric statistics