Advertisement

Psychometrika

, Volume 60, Issue 3, pp 375–393 | Cite as

Residualanalysis in the polytomous rasch model

  • Erling B. Andersen
Article

Abstract

Residuals for check of model fit in the polytomous Rasch model are examined. Comparisons are made between using counts for all response pattern and using item totals for score groups for the construction of the residuals. Comparisons are also, for the residuals based on score group totals, made between using as basis the item totals, or using the estimated item parameters. The developed methods are illustrated by two examples, one from a psychiatric rating scale, one from a Danish Welfare Study.

Key words

polytomous Rasch model residuals latent structure model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, E. B. (1972). The numerical solution of a set of conditional estimation equations.Journal of the Royal Statistical Society, Series B, 34, 42–54.Google Scholar
  2. Andersen, E. B. (1973a). A goodness of fit test for the Rasch model.Psychometrika, 38, 123–140.Google Scholar
  3. Andersen, E. B. (1973b). Conditional inference and multiple-choice questionnaires.The British Journal of Mathematical and Statistical Psychology.26, 31–44.Google Scholar
  4. Andersen, E. B. (1973c).Conditional inference and models for measuring. Copenhagen: Mentalhygiejnisk Forlag.Google Scholar
  5. Andersen, E. B. (1977). Sufficient statistics and latent trait models.Psychometrika, 42, 69–81.Google Scholar
  6. Andrich, D. (1978). A rating formulation for ordered response categories.Psychometrika, 43, 561–573.Google Scholar
  7. Bech, P. (1990). Methodological problems in assessing quality of life as outcome in psychopharmacology: A multiaxial approach. In Benkert, O. Benkert, W. Maier, and K. Rickels (Eds.),Methodology of the evaluation of psychotropic drugs. Berlin-Heidelberg: Springer-Verlag.Google Scholar
  8. Bech, P., Allerup, P., et al. (1992). The Hamilton scale and the Hopkins Symptom Checklist (SCL-90): A cross-national validity study in patients with panic disorders.British Journal of Psychiatry, 160, 206–211.Google Scholar
  9. Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975),Discrete multivariate analysis. Theory and practice. Cambridge: The MIT Press.Google Scholar
  10. Derogatis, L. R. et al. (1974). The Hopkins Symptom Checklist (HSCL). In: P. Pichot (Ed.),Psychological measurement in psychopharmacology (pp. 79–110). Basel: Karger.Google Scholar
  11. Glas, C. A. W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution.Psychometrika, 53, 525–546.Google Scholar
  12. Glas, C. A. W. (1989).Contributions to estimating and testing Rasch models. Arnhem: Cito.Google Scholar
  13. Glas, C. A. W., & Verhelst, N. D. (1989). Extensions of the partial credit model.Psychometrika, 54, 635–659.Google Scholar
  14. Hansen, E. J. (1978).The distribution of living conditions. Main results from the welfare survey. Copenhagen: Teknisk Forlag. (In Danish. Danish National Institute for Social Research. Publication 82).Google Scholar
  15. Molenaar, I. W. (1983). Some improved diagnostics for failure of the Rasch model.Psychometrika, 48, 49–72.Google Scholar
  16. Rasch, G. (1961). On general laws and the meaning of measurement in psychology.Proceedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, 5, 321–333.Google Scholar
  17. Rao, C. R. (1973). Linear statistical inference and its applications (2nd ed.). New York. John Wiley and Sons.Google Scholar
  18. Tjur, T. (1982). A connection between Rasch's item analysis model and a multiplicative Poisson model.Scandinavian Journal of Statistics, 9, 23–30.Google Scholar
  19. van den Wollenberg, A. L. (1982). Two new test statistics for the Rasch model.Psychometrika, 47, 123–140.Google Scholar

Copyright information

© The Psychometric Society 1995

Authors and Affiliations

  • Erling B. Andersen
    • 1
  1. 1.Department of StatisticsUniversity of CopenhagenCopenhagen, KDenmark

Personalised recommendations