Psychometrika

, Volume 52, Issue 3, pp 393–408 | Cite as

On the relationship between item response theory and factor analysis of discretized variables

  • Yoshio Takane
  • Jan de Leeuw
Article

Abstract

Equivalence of marginal likelihood of the two-parameter normal ogive model in item response theory (IRT) and factor analysis of dichotomized variables (FA) was formally proved. The basic result on the dichotomous variables was extended to multicategory cases, both ordered and unordered categorical data. Pair comparison data arising from multiple-judgment sampling were discussed as a special case of the unordered categorical data. A taxonomy of data for the IRT and FA models was also attempted.

Key words

marginal maximum likelihood estimation dichotomous data ordered and unordered categorical data pair comparison data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. (1980). Likelihood and the Bayes procedure. In J. M. Bernardo et al. (Eds.),Bayesian statistics. Valencia University Press.Google Scholar
  2. Andersen, E. B. (1980).Discrete statistical models with social science applications. Amsterdam: North-Holland.Google Scholar
  3. Basu, D. (1977). On elimination of nuisance parameters.Journal of the American Statistical Association, 22, 229–243.Google Scholar
  4. Bartholomew, D. J. (1983). Latent variable models for ordered categorical data.Journal of Econometrics.22, 229–243.Google Scholar
  5. Bartholomew, D. J. (1985, July). A unified view of factor analysis, latent structure analysis and scaling. Invited paper given at the 4-th European Meeting of the Psychometric Society and Classification Societies, Cambridge.Google Scholar
  6. Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories.Psychometrika, 37, 29–51.Google Scholar
  7. Bock, R. D. (1975).Multivariate statistical methods in behavioral research. New York: McGraw Hill.Google Scholar
  8. Bock, R. D. (1984, June).Full information item factor analysis. Paper presented at the Joint Meeting of the Classification Society and the Psychometric Society, Sant Barbara.Google Scholar
  9. Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm.Psychometrika, 46, 443–459.Google Scholar
  10. Bock, R. D., & Jones, L. V. (1968).The measurement and prediction of judgment and choice. San Francisco: Holden Day.Google Scholar
  11. Bock, R. D., & Lieberman, M. (1970). Fitting a response model forn dichotomously scored items.Psychometrika, 35, 283–319.Google Scholar
  12. Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via anN-way generalization of “Eckart-Young” decomposition.Psychometrika, 35, 283–319.Google Scholar
  13. Christoffersson, A. (1975). Factor analysis of dichotomized variables.Psychometrika, 40, 5–32.Google Scholar
  14. Coombs, C. H. (1964).A theory of data. New York: Wiley.Google Scholar
  15. Cox, D. R. (1966). Some procedure connected with the logistic qualitative response curve. In F. N. David (Ed.),Research papers in statistics: Festschrift for J. Neyman (pp. 55–71). New York: Wiley.Google Scholar
  16. de Leeuw, J. (1983). Models and methods for the analysis of correlation coefficients.Journal of Econometrics, 22, 113–137.Google Scholar
  17. De Soete, G., & Carroll, J. D. (1983). A maximum likelihood method for fitting the wandering vector model.Psychometrika, 48, 553–566.Google Scholar
  18. De Soete, G., Carroll, J. D., & DeSarbo, W. S. (in press). The wandering ideal point model: A probabilistic multidimensional unfolding model for paired comparisons data.Journal of Mathematical Psychology.Google Scholar
  19. Gifi, A. (1981).Non-linear multivariate analysis. Unpublished manuscript, University of Leiden, Department of Data Theory.Google Scholar
  20. Greenacre, M. (1984).Theory and application of correspondence analysis. London: Academic Press.Google Scholar
  21. Heiser, W. J. (1981).Unfolding analysis of proximity data. Unpublished doctoral Dissertation, University of Leiden.Google Scholar
  22. Heiser, W., & de Leeuw, J. (1981). Multidimensional mapping of preference data.Mathematique et Sciences Humaines, 19, 39–96.Google Scholar
  23. Johnson, N. L., & Kotz, S. (1974).Distribution in Statistics: Multivariate distributions. New York: Wiley.Google Scholar
  24. Jöreskog, K. G. (1970). A general method for analysis of covariance structures.Biometrika, 57, 239–251.Google Scholar
  25. Lazarsfeld, P. F., & Henry, N. (1968).Latent structure analysis. New York: Houghton Mifflin.Google Scholar
  26. Lord, F. M., & Novick, M. R. (1968).Statistical theories of mental test scores. Reading, MA: Addison Wesley.Google Scholar
  27. Luce, R. D. (1959).Individual choice behavior: A theoretical analysis. New York: Wiley.Google Scholar
  28. Mislevy, R. J. (in press). Recent developments in factor analysis of categorical variables.Journal of Educational Statistics.Google Scholar
  29. Muthén, B. (1978). Contributions to factor analysis of dichotomous variables.Psychometrika, 43, 551–560.Google Scholar
  30. Muthén, B. (1979). A structural probit model with latent variables.Journal of the American Statistical Association, 24, 807–811.Google Scholar
  31. Muthén, B. (1983). Latent variable structural equation modeling with categorical data.Journal of Econometrics, 22, 43–65.Google Scholar
  32. Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators.Psychometrika, 49, 115–132.Google Scholar
  33. Muthén, B., & Christoffersson, A. (1981). Simultaneous factor analysis of dichotomous variables in several groups.Psychometrika, 46, 407–419.Google Scholar
  34. Ramsay, J. O. (1982). Some statistical approaches to multidimensional scaling.Journal of the Royal Statistical Society, Series A, 145, 285–312.Google Scholar
  35. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores.Psychometrika Monograph No. 17, 34(4, Pt. 2).Google Scholar
  36. Schönemann, P. H., & Wang, M. M. (1972). An individual difference model for the multidimensional analysis of preference data.Psychometrika, 37, 275–309.Google Scholar
  37. Sjoberg, L. (1967). Successive categories scaling of paired comparisons.Psychometrika, 32, 297–308.Google Scholar
  38. Takane, Y. (1980a). Analysis of categorizing behavior by a quantification method.Behaviormetrika, 8, 75–86.Google Scholar
  39. Takane, Y. (1980b). Maximum likelihood estimation in the generalized case of Thurstone's model of comparative judgment.Japanese Psychological Rsearch, 22, 188–196.Google Scholar
  40. Takane, Y. (1983a, July). Choice model analysis of the “pick any/n” type of binary data. Handout for the talk given at the European Psychometric and Classification Meeting, Jouy-en-Josas.Google Scholar
  41. Takane, Y. (1983b, June). An item response model for multidimensional analysis of multiple-choice data. Handbook for the talk given at the Annual Meeting of the Psychometric Society, Los Angeles.Google Scholar
  42. Takane, Y. (1985, June). Probabilistic multidimensional pair comparison models that take into account systematic individual differences. Transcript of the talk given at the 50-th Anniversary Meeting of the Psychometric Society, Nashville, TN.Google Scholar
  43. Takane, Y., & Carroll, J. D. (1981). Nonmetric maximum likelihood multidimensional scaling from directional rankings of similarities.Psychometrika, 46, 389–405.Google Scholar
  44. Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model.Psychometrika, 47, 175–186.Google Scholar
  45. Thurstone, L. L. (1927). A law of comparative judgments.Psychological Review, 34, 273–286.Google Scholar
  46. Thurstone, L. L. (1945). The prediction of choice.Psychometrika, 10, 237–253.Google Scholar
  47. Weinberg, S. L. Carroll, J. D., & Cohen, H. S. (1984). Confidence regions for INDSCAL using the jackknife and bootstrap techniques.Psychomertrika, 49, 475–491.Google Scholar

Copyright information

© The Psychometric Society 1987

Authors and Affiliations

  • Yoshio Takane
    • 1
  • Jan de Leeuw
    • 2
  1. 1.Department of PsychologyMcGill UniversityMontrealCanada
  2. 2.University of LeidenThe Netherlands

Personalised recommendations