Advertisement

Psychometrika

, Volume 64, Issue 3, pp 325–340 | Cite as

Thurstonian modeling of ranking data via mean and covariance structure analysis

  • Albert Maydeu-Olivares
Article

Abstract

Although Thurstonian models provide an attractive representation of choice behavior, they have not been extensively used in ranking applications since only recently efficient estimation methods for these models have been developed. These, however, require the use of special-purpose estimation programs, which limits their applicability. Here we introduce a formulation of Thurstonian ranking models that turns an idiosyncratic estimation problem into an estimation problem involving mean and covariance structures with dichotomous indicators. Well-known standard solutions for the latter can be readily applied to this specific problem, and as a result any Thurstonian model for ranking data can be fitted using existing general purpose software for mean and covariance structure analysis. Although the most popular programs for covariance structure analysis (e.g., LISREL and EQS) cannot be presently used to estimate Thurstonian ranking models, other programs such as MECOSA already exist that can be straightforwardly used to estimate these models.

Key words

GMM, GLS, WLS estimation UMD, ULS, EWMD estimation permutation data random utility models structural equations models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arminger, G., Wittenberg, J., & Schepers, A. (1996).MECOSA 3. User guide. Friedrichsdorf: Additive GmbH.Google Scholar
  2. Bekker, P.A., Merckens, A., & Wansbeek, T.J. (1994).Identification, equivalent models and computer algebra. San Diego: Academic Press.Google Scholar
  3. Bentler, P.M. (1995).EQS Structural Equations Program Manual. Encino, CA: Multivariate Software.Google Scholar
  4. Bock, R.D. (1975).Multivariate statistical methods in behavioral research. New York: McGraw Hill.Google Scholar
  5. Bock, R.D., & Jones, L.V. (1968).The measurement and prediction of judgment and choice. San Francisco: Holden-Day.Google Scholar
  6. Böckenholt, U. (1992). Thurstonian representation for partial ranking data.British Journal of Mathematical and Statistical Psychology, 45, 31–49.Google Scholar
  7. Böckenholt, U. (1993). Applications of Thurstonian models to ranking data. In M.A. Fligner & J.S. Verducci (Eds).Probability models and statistical analyses for ranking data. New York: Springer-Verlag.Google Scholar
  8. Brady, H.E. (1989). Factor and ideal point analysis for interpersonally incomparable data.Psychometrika, 54, 181–202.Google Scholar
  9. Chan, W., & Bentler, P.M. (1998). Covariance structure analysis of ordinal ipsative data.Psychometrika, 63, 369–399.Google Scholar
  10. Christoffersson, A. (1975). Factor analysis of dichotomized variables.Psychometrika, 40, 5–32.Google Scholar
  11. Clark, T.E. (1996). Small-sample properties of estimators of nonlinear models of covariance structure.Journal of Bussiness and Economic Statistics, 14, 367–373.Google Scholar
  12. Dansie, B.R. (1986). Normal order statistics as permutation probability models.Applied Statistics, 3, 269–275.Google Scholar
  13. Jöreskog, K.G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix.Psychometrika, 59, 381–389.Google Scholar
  14. Jöreskog, K.G., & Sörbom, D. (1993).LISREL 8. User's reference guide. Chicago, IL: Scientific Software.Google Scholar
  15. Küsters, U.L. (1987).Hierarchische Mittelwert- und Kovarianztrukturmodelle mit nichtmetrischen endogenen Variablen [Hierarchical mean and covariance structure models on nonmetric endogenous variables]. Heidelberg: Physica-Verlag.Google Scholar
  16. Lee, S.Y., Poon, W.Y., & Bentler, P.M. (1995). A two-stage estimation of structural equation models with continuous and polytomous variables.British Journal of Mathematical and Statistical Psychology, 48, 339–358.Google Scholar
  17. Maydeu-Olivares, A. (1995, July).Structural equation modeling of paired comparisons and ranking data. Paper presented at the 9th European Meeting of the Psychometric Society. Leiden, The Netherlands.Google Scholar
  18. Muthén, B. (1978). Contributions to factor analysis of dichotomous variables.Psychometrika, 43, 551–560.Google Scholar
  19. Muthén, B. (1982). Some categorical response models with continuous latent variables. In K.G. Jöreskog & H. Wold (Eds.).Systems under indirect observation. (Vol 1). Amsterdam: North Holland.Google Scholar
  20. Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators.Psychometrika, 49, 115–132.Google Scholar
  21. Muthén, B. (1987).LISCOMP: Analysis of linear structural equations using a comprehensive measurement model. Mooresville, IN: Scientific Software.Google Scholar
  22. Muthén, B. (1993). Goodness of fit with categorical and other non normal variables. In K.A. Bollen & J.S. Long (Eds.)Testing structural equation models. Newbury Park, CA: Sage.Google Scholar
  23. Muthén, B., & Satorra, A. (1995). Technical aspects of Muthén's LISCOMP approach to estimation of latent variable relations with a comprehensive measurement model.Psychometrika, 60, 489–503.Google Scholar
  24. Rao, C.R. (1973).Linear statistical inference and its applications (2nd ed). New York: Wiley.Google Scholar
  25. Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified approach.Psychometrika, 54, 131–151.Google Scholar
  26. Satorra, A., & Bentler, P.M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis.ASA 1988 Proceedings of the Business and Statistics section, 308–313.Google Scholar
  27. Takane, Y. (1987). Analysis of covariance structures and probabilistic binary choice data.Communication and Cognition, 20, 45–62.Google Scholar
  28. Takane, Y. (1989). Analysis of covariance structures and probabilistic binary choice data. In G. Soete, H. Feger & K.C. Klauer (Eds.),New developments in psychological choice modeling (pp. 139–160). Amsterdam: Elsevier Science.Google Scholar
  29. Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables.Psychometrika, 52, 393–408.Google Scholar
  30. Thurstone, L.L. (1927). A law of comparative judgment.Psychological Review, 79, 281–299.Google Scholar
  31. Thurstone, L.L. (1931). Rank order as a psychological method.Journal of Experimental Psychology, 14, 187–201.Google Scholar
  32. Yao, K.G., & Böckenholt, U. (1999). Bayesian estimation of Thurstonian ranking models based on the Gibbs sampler.British Journal of Mathematical and Statistical Psychology, 52, 79–92.Google Scholar

Copyright information

© The Psychometric Society 1999

Authors and Affiliations

  1. 1.University of Illinois at Urbana-ChampaignUSA

Personalised recommendations