Skip to main content
Log in

Identification of inconsistent variates in factor analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

When some of observed variates do not conform to the model under consideration, they will have a serious effect on the results of statistical analysis. In factor analysis the model with inconsistent variates may result in improper solutions. In this article a useful method for identifying a variate as inconsistent is proposed in factor analysis. The procedure is based on the likelihood principle. Several statistical properties such as the effect of misspecified hypotheses, the problem of multiple comparisons, and robustness to violation of distributional assumptions are investigated. The procedure is illustrated by some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification.IEEE Transactions on Automatic Control, AC-19, 716–723.

    Google Scholar 

  • Akaike, H. (1987). Factor analysis and AIC.Psychometrika, 52, 317–332.

    Google Scholar 

  • Amemiya, Y., & Anderson, T. W. (1990). Asymptotic chi-square tests for a large class of factor analysis models (Tech. Rep. No. 13, Stanford Univ., 1985).The Annals of Statistics, 18, 1453–1463.

    Google Scholar 

  • Anderson, T. W. (1989). Linear latent variable models and covariance structures.Journal of Econometrics, 41, 91–119.

    Google Scholar 

  • Bentler, P. M. (1983). Some contributions to efficient statistics in structural models: Specification and estimation of moment structures.Psychometrika, 48, 493–517.

    Google Scholar 

  • Bentler, P. M. (1989).EQS structural equations program manual. Los Angeles: BMDP Statistical Software.

    Google Scholar 

  • Boomsma, A. (1985). Nonconvergence, improper solutions, and starting values in LISREL maximum likelihood estimation.Psychometrika, 50, 229–242.

    Google Scholar 

  • Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures.South African Statistical Journal, 8, 1–24.

    Google Scholar 

  • Browne, M. W. (1982). Covariance structures. In D. M. Hawkins (Ed.),Topics in applied multivariate analysis (pp. 72–141). Cambridge: Cambridge University Press.

    Google Scholar 

  • Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures.British Journal of Mathematical and Statistical Psychology, 37, 62–83.

    Google Scholar 

  • Browne, M., & Shapiro, A. (1988). Robustness of normal theory methods in the analysis of linear latent variate models.British Journal of Mathematical and Statistical Psychology, 41, 193–208.

    Google Scholar 

  • Davis, F. B. (1944). Fundamental factors of comprehension in reading.Psychometrika, 9, 185–197.

    Google Scholar 

  • Fujikoshi, Y. (1985). Selection of variables in two-group discriminant analysis by error rate and Akaike's information criteria.Journal of Multivariate Analysis, 17, 27–37.

    Google Scholar 

  • Hochberg, Y., & Tamhane, A. C. (1987).Multiple comparison procedures. New York: Wiley.

    Google Scholar 

  • Ihara, M., & Kano, Y. (1991, July).Variable selection in factor analysis. Paper presented at the 7th European Meeting of the Psychometric Society. Trier, Germany.

  • Ihara, M., & Okamoto, M. (1985). Experimental comparison of least-squares and maximum likelihood methods in factor analysis.Statistics & Probability Letters, 6, 287–293.

    Google Scholar 

  • Jolliffe, I. T. (1986).Principal component analysis. New York: Springer-Verlag.

    Google Scholar 

  • Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis.Psychometrika, 32, 443–482.

    Google Scholar 

  • Jöreskog, K. G., & Sörbom, M. (1988).LISREL 7: A guide to the program and applications. Chicago: SPSS.

    Google Scholar 

  • Kano, Y. (1990). Noniterative estimation and the choice of the number of factors in exploratory factor analysis.Psychometrika, 55, 277–291.

    Google Scholar 

  • Kano, Y. (1993). Asymptotic properties of statistical inference based on Fisher consistent estimators in the analysis of covariance structures. In K. Haagen, D. J. Bartholomew, & M. Deistler (Eds.),Proceedings of the international workshop on statistical modelling and latent variables. Amsterdam: Elsevier Science Publisher.

    Google Scholar 

  • Lawley, D. N., & Maxwell, A. E. (1971).Factor analysis as a statistical method (2nd ed.). London: Butterworths.

    Google Scholar 

  • Lee, S. Y. (1980). Estimation of covariance structure models with parameters subject to functional restraints.Psychometrika, 45, 309–324.

    Google Scholar 

  • Lee, S. Y., & Bentler, P. M. (1980). Some asymptotic properties of constrained generalized least squares estimation in covariance structure models.South African Statistical Journal, 14, 121–136.

    Google Scholar 

  • Lee, S. Y., & Jennrich, R. I. (1979). A study of algorithms for covariance structure analysis with specific comparisons using factor analysis.Psychometrika, 44, 99–113.

    Google Scholar 

  • Magnus, J. R., & Neudecker, H. (1988).Matrix differential calculus with applications in statistics and econometrics. New York: Wiley.

    Google Scholar 

  • Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications.Biometrika, 57, 519–530.

    Google Scholar 

  • Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies.Sankhyā, Series B, 36, 115–128.

    Google Scholar 

  • Martin, J. K., & McDonald, R. P. (1975). Bayesian estimation in unrestricted factor analysis: A treatment for Heywood cases.Psychometrika, 40, 505–517.

    Google Scholar 

  • Maxwell, A. E. (1961). Recent trends in factor analysis.Journal of the Royal Statistical Society, Series A, 124, 49–59.

    Google Scholar 

  • Mooijaart, A., & Bentler, P. M. (1991). Robustness of normal theory statistics in structural equation models.Statistica Neerlandica, 45, 159–171.

    Google Scholar 

  • Muirhead, R. J., & Waternaux, C. M. (1980). Asymptotic distributions in canonical analysis and other multivariate procedures for nonnormal populations.Biometrika, 67, 31–43.

    Google Scholar 

  • Okamoto, M., & Ihara, M. (1984). Partial Gauss-Newton algorithm for least-squares and maximum likelihood methods in factor analysis.Journal of the Japan Statistical Society, 14, 137–144.

    Google Scholar 

  • Rao, C. R. (1955). Estimation and tests of significance in factor analysis.Psychometrika, 20, 93–111.

    Google Scholar 

  • Rao, C. R. (1973).Linear statistical inference and its application (2nd ed.). New York: Wiley.

    Google Scholar 

  • Rindskopf, D. M. (1983). Parameterizing inequality constraints on unique variances in linear structural equation models.Psychometrika, 48, 73–83.

    Google Scholar 

  • Ryan, T. A. (1959). Multiple comparisons in psychological research.Psychological Bulletin, 56, 26–47.

    Google Scholar 

  • Ryan, T. A. (1960). Significance tests for multiple comparison of proportions, variances, and other statistics.Psychological Bulletin, 57, 318–328.

    Google Scholar 

  • SAS Institute. (1988).SAS/STAT: User's guide (Vol. 1, Ver. 6, 4th ed.). Cary, NC: Author.

    Google Scholar 

  • Sato, M. (1987). Pragmatic treatment of improper solutions in factor analysis.Annals of the Institute of Statistical Mathematics, Part B, 39, 443–455.

    Google Scholar 

  • Satorra, A. (1989). Alternative test criteria in covariance structure analysis.Psychometrika, 54, 131–151.

    Google Scholar 

  • Shapiro, A., & Browne, M. (1987). Analysis of covariance structures under elliptical distributions.Journal of the American Statistical Association, 82, 1092–1097.

    Google Scholar 

  • Tanaka, Y. (1983). Some criteria for variable selection in factor analysis.Behaviormetrika, 13, 31–45.

    Google Scholar 

  • van Driel, O. P. (1978). On various causes of improper solutions in maximum likelihood factor analysis.Psychometrika, 43, 225–243.

    Google Scholar 

  • Yanai, H. (1980). A proposition of generalized method for forward selection of variables.Behaviormetrika, 7, 95–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kano, Y., Ihara, M. Identification of inconsistent variates in factor analysis. Psychometrika 59, 5–20 (1994). https://doi.org/10.1007/BF02294262

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294262

Key words

Navigation