Skip to main content
Log in

Rating scale analysis with latent class models

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A general approach for analyzing rating data with latent class models is described, which parallels rating models in the framework of latent trait theory. A general rating model as well as a two-parameter model with location and dispersion parameters, analogous to Andrich's Dislocmodel are derived, including parameter estimation via the EM-algorithm. Two examples illustrate the application of the models and their statisticalcontrol. Model restrictions through equality constrains are discussed and multiparameter generalizations are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitkin, M., Anderson, D. & Hinde, J. (1981). Statistical modelling of data on teaching styles.Journal of the Royal Statistical Society, Series A, 144, 419–461.

    Google Scholar 

  • Andersen, E. B. (1982a). Latent structure analysis—A survey.Scandinavian Journal of Statistics, 9, 1–12.

    Google Scholar 

  • Andersen, E. B. (1982b). Latent trait models and ability parameter estimation. Applied Psychological Measurement, 6, 445–461.

    Google Scholar 

  • Andrich, D. (1978a). A binomial latent trait model for the study of Likert-style attitude questionnaires.British Journal of Mathematical and Statistical Psychology, 31, 84–98.

    Google Scholar 

  • Andrich, D. (1978b). A rating formulation for ordered response categories.Psychometrika, 43, 561–573.

    Google Scholar 

  • Andrich, D. (1982). An extension of the Rasch model for ratings providing both location and dispersion parameters.Psychometrika, 47, 1, 105–113.

    Google Scholar 

  • Andrich, D. (1983). Diagnosing and accounting for response sets provoked by items of a questionnaire. The University of Western Australia, Department of Education.

  • Andrich, D. (1985). An elaboration of Guttman scaling with Rasch models for measurement. In N. B. Tuma (Ed.), Sociological Methodology 1985 (pp. 33–80). San Francisco: Jossey-Bass.

    Google Scholar 

  • Bentler, P. M., & Tanaka, J. S. (1983). Problems with EM for ML factor analysis.Psychometrika, 48, 2, 247–251.

    Google Scholar 

  • Bishop, Y. M. M., Fienberg, S. E. & Holland, P. W. (1975). Discrete multivariate analysis: Theory and practice. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Bock, R. D. & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM-algorithm.Psychometrika, 46, 443–459.

    Google Scholar 

  • Clogg, C. C. (1977).Unrestricted and restricted maximum likelihood latent structure analysis: A manual for users (Working paper No. 1977-09). Pennsylvania Population Issues Research Office, University Park.

  • Clogg, C. C. (1979). Some latent structure models for the analysis of Likert-type data.Social Science Research, 8, 287–301.

    Google Scholar 

  • Clogg, C. C. (1981). New developments in latent structure analysis. In D. J. Jackson & E. F. Borgatta (Eds.),Factor analysis and measurement in sociological research (pp. 215–246). London: Sage.

    Google Scholar 

  • Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM-algorithm.Journal of the Royal Statistical Society, Series B, 39, 1–22.

    Google Scholar 

  • Fienberg, S. E. (1979). The use of chi-squared statistics for categorical data problems.Journal of the Royal Statistical Society, Series B, 41, 54–64.

    Google Scholar 

  • Fischer, G. H. (1983). Logistic latent trait models with linear constraints.Psychometrika, 48, 3–26.

    Google Scholar 

  • Formann, A. K. (1984).Die Latent-Class-Analyse (Latent class analysis). Weinheim: Beltz.

    Google Scholar 

  • Formann, A. K. (1985). Constrained latent class models: Theory and applications.British Journal of Mathematical and Statistical Psychology, 38, 87–111.

    Google Scholar 

  • Goodman, L. A. (1974). The analysis of systems of qualitative variables when some of the variables are unobservable. Part I—a modified latent structure approach.American Journal of Sociology, 79, 5, 1179–1259.

    Google Scholar 

  • Goodman, L. A. (1978). Analyzing qualitative/categorical data: Log-linear models and latent-structure analysis. Cambridge: Abt Books.

    Google Scholar 

  • Häussler, P., Hoffmann, L. & Rost, J. (1986). Zum Stand physikalischer Bildung Erwachsener [On the level of physics education in the adult population]. Kiel: IPN.

    Google Scholar 

  • Langheine, R. (1988). New developments in latent class theory. In R. Langeheine & J. Rost (Eds.),Latent trait and latent class models (pp. 77–108). New York: Plenum.

    Google Scholar 

  • Langeheine, R. & Lehmann, J. (1986). Die Bedeutung der Erziehung für das Umweltbewußtsein: Ergebnisse pädagogisch-empirischer Forschungen zum ökologischen Wissen und Handeln [The impact of education on environmental concern: Results of empirical educational research on ecology-knowledge and action]. Kiel: IPN.

    Google Scholar 

  • Lazarsfeld, P. F. & Henry, N. W. (1968).Latent structure analysis. Boston: Houghton Mifflin.

    Google Scholar 

  • Masters, G. N. (1982). A Rasch model for partial credit scoring.Psychometrika, 47, 149–174.

    Google Scholar 

  • Masters, G. N. (1985). A comparison of latent trait and latent class analyses of Likert-type data.Psychometrika, 50, 1, 69–82.

    Google Scholar 

  • Masters, G. N. & Wright, B. D. (1984). The essential process in a family of measurement models.Psychometrika, 49, 529–544.

    Google Scholar 

  • Rasch, G. (1960). Probabilisitc models for some intelligence and attainment tests. Copenhagen: Nielsen & Lydiche. (2nd Edition, Chicago: University of Chicago Press, 1980).

    Google Scholar 

  • Rost, J. (1985). A latent class model for rating data.Psychometrika, 50, 37–49.

    Google Scholar 

  • Rost, J. (1988). Test theory with qualitative und quantitative latent variables. In R. Langeheine & J. Rost (Eds.),Latent trait and latent class models (pp. 147–171). New York: Plenum.

    Google Scholar 

  • Rubin, D. B. & Thayer, D. T. (1983). More on EM for ML factor analysis.Psychometrika, 48, 2, 253–257.

    Google Scholar 

  • Wright, D. D. & Masters, G. N. (1982).Rating scale analysis: Rasch measurement. Chicago: Mesa Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rost, J. Rating scale analysis with latent class models. Psychometrika 53, 327–348 (1988). https://doi.org/10.1007/BF02294216

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294216

Key words

Navigation