Skip to main content
Log in

Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

In the application of clustering methods to real world data sets, two problems frequently arise: (a) how can the various contributory variables in a specific battery be weighted so as to enhance some cluster structure that may be present, and (b) how can various alternative batteries be combined to produce a single clustering that “best” incorporates each contributory set. A new method is proposed (SYNCLUS, SYNthesizedCLUStering) for dealing with these two problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference notes

  • DeSarbo, W. S. and Mahajan, V. (1982). Constrained classification,Working Paper, Bell Laboratories, Murray Hill, N.J.

    Google Scholar 

  • Fowlkes, E. (1981). Variable selection in clustering,presented at Bell Laboratories Work Seminar, Murray Hill, N.J.

  • Fowlkes, E., Gnanadesikan, R., and Kettenring, J. R. (1982). Variable selection in clustering,Work in Progress, Bell Laboratories, Murray Hill, N.J.

    Google Scholar 

  • Green, P. E. and Goldberg, S. M. (1981). The beta drug company case,Wharton-School Publication, University of Pennsylvania.

References

  • Arabie, P. A. and Carroll, J. D. (1980).MAPCLUS: A mathematical programming approach to fitting theADCLUS model,Psychometrika, 45, 211–235.

    Google Scholar 

  • Arabie, P., Carroll, J. D. DeSarbo, W. S., and Wind, Y. (1981). Overlapping clustering: A new methodology for product positioning,Journal of Marketing Research, 18, pp. 000–000.

    Google Scholar 

  • Art, D., Gnanadesikan, R., and Kettenring, J. R. (in press). Data-based metrics for cluster analysis,Utilitas Mathematica.

  • Carroll, J. D. and Arabie, P. A. (1983). INDCLUS: An individual differences generalization of the ADCLUS Model and the MAPCLUS Algorithm,Psychometrika, 48, 157–169.

    Google Scholar 

  • DeSarbo, W. S. (1982). GENNCLUS: New models for general nonhierarchical clustering analysis,Psychometrika, 47, 449–475.

    Google Scholar 

  • Friedman, H. P. and Rubin, J. (1967). On some invariant criteria for grouping data,Journal of the American Statistical Association, 62, 1159–1178.

    Google Scholar 

  • Friedman, J. H. and Tukey, J. W. (1974). A projection pursuit algorithm for exploratory data analysis,IEEE Transactions on Computers, C-23, 881–890.

    Google Scholar 

  • Garfinkle, R. S. and Nemhauser, G. L. (1972).Integer Programming, New York: J. Wiley and Sons.

    Google Scholar 

  • Hartigan, J. A. (1975).Clustering Algorithms, New York: J. Wiley and Sons.

    Google Scholar 

  • Hartigan, J. A. (1978). Asymptotic distributions for clustering criteria,Annals of Statistics, Vol. 6, No. 1, 117–131.

    Google Scholar 

  • Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,Psychometrika, 29, 1–27.

    Google Scholar 

  • Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method,Psychometrika, 29, 115–129.

    Google Scholar 

  • Kruskal, J. B. and Carroll, J. D. (1969). Geometrical models and badness-of-fit functions, inMultivariate Analysis III, edited by P. R. Krishnaiah, New York: Academic Press, 639–670.

    Google Scholar 

  • Kruskal, J. B. (1972). Linear transformations of multivariate data to reveal clustering, inMultidimensional Scaling: Theory and Applications in the Behavioral Sciences, edited by Shepard, R. N., Romney, A. K., and Nerlove, S. B., New York: Seminar Press, 181–191.

    Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations,Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I, 231–297.

    Google Scholar 

  • Morrison, D. G. (1967). Measurement problems in cluster analysis,Management Science, 13, 775–780.

    Google Scholar 

  • Pollard, D. (1981). Strong consistency ofK-means clustering,Annals of Statistics, Vol. 9, No. 1, 135–140.

    Google Scholar 

  • Rohlf, F. J. (1970). Adaptive hierarchical clustering schemes,Systematic Zoology, 19, 58–82.

    Google Scholar 

  • Sneath, P. H. A. and Sokal, R. R. (1973).Numerical Taxonomy, San Francisco: W. H. Freeman and Co.

    Google Scholar 

  • Späth, H. (1980).Cluster Analysis Algorithms, Chichester, England: Ellis Horwood Ltd.

    Google Scholar 

  • Shepard, R. N. and Arabie, P. (1979). Additive clustering: representation of similarities as combination of discrete overlapping properties,Psychological Review, 86, 87–123.

    Google Scholar 

  • Wind, Y. (1982).Product Policy: Concepts, Methods and Strategy, Reading, Mass.: Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank Anne Freeny and Deborah Art for their computer assistance, and Ed Fowlkes for his helpful technical discussion. We would also like to acknowledge the insightful and helpful comments from the editor and reviewers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeSarbo, W.S., Carroll, J.D., Clark, L.A. et al. Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables. Psychometrika 49, 57–78 (1984). https://doi.org/10.1007/BF02294206

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294206

Key words

Navigation