Psychometrika

, Volume 65, Issue 1, pp 23–28 | Cite as

Sample size requirements for estimating pearson, kendall and spearman correlations

  • Douglas G. Bonett
  • Thomas A. Wright
Article

Abstract

Interval estimates of the Pearson, Kendall tau-a and Spearman correlations are reviewed and an improved standard error for the Spearman correlation is proposed. The sample size required to yield a confidence interval having the desired width is examined. A two-stage approximation to the sample size requirement is shown to give accurate results.

Key words

sample size interval estimation correlation rank correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caruso, J.C., & Cliff, N. (1997). Empirical size, coverage, and power of confidence intervals for Spearman's rho.Educational and Psychological Measurement, 57, 637–654.Google Scholar
  2. Cohen, J. (1988).Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  3. Cohen, J., & Cohen, P. (1975).Applied multiple regression/Correlation analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  4. David, F.N. (1938).Tables of the ordinates and probability integral of the distribution of the correlation coefficient in small samples. Cambridge: Cambridge University Press.Google Scholar
  5. Desu, M.M., & Raghavarao, D. (1990).Sample size methodology. Boston, MA: Academic Press.Google Scholar
  6. Duncan, G.T., & Layard, M.W.J. (1973). A Monte-Carlo study of asymptotically robust tests for correlation coefficients.Biometrika, 60, 551–558.Google Scholar
  7. Dunlap, H.F. (1931). An empirical determination of the distribution of means, standard deviations, and correlation coefficients drawn from rectangular distributions.Annals of Mathematical Statistics, 2, 66–81.Google Scholar
  8. Fieller, E.C., Hartley, H.O., & Pearson, E.S. (1957). Tests for rank correlation coefficients. I.Biometrika, 44, 470–481.Google Scholar
  9. Fisher, R.A. (1925).Statistical methods for research workers. London: Hafner Press.Google Scholar
  10. Gardner, M.J., & Altman, D.G. (1986). Confidence intervals rather thanp-values: Estimation rather than hypothesis testing.British Medical Journal, 292, 746–750.Google Scholar
  11. Gayen, A.K. (1951). The frequency distribution of the product moment correlation in random samples of any size drawn from non-normal universes.Biometrika, 38, 219–247.Google Scholar
  12. Hahn, G.J., & Meeker, W.Q. (1991).Statistical intervals: A guide for practitioners. New York, NY: Wiley.Google Scholar
  13. Haldane, J.B.S. (1949). A note on non-normal correlation.Biometrika, 36, 467–468.Google Scholar
  14. Kowalski, C.J. (1972). On the effects of non-normality on the distribution of the sample product moment correlation coefficient.Applied Statistics, 21, 1–12.Google Scholar
  15. Long, J.D., & Cliff, N. (1997). Confidence intervals for Kendall's tau.British Journal of Mathematical and Statistical Psychology, 50, 31–41.Google Scholar
  16. Looney, S.W. (1996). Sample size determination for correlation coefficient inference: Practical problems and practical solutions.American Statistical Association 1996 Proceedings of the Section on Statistical Education, 240–245.Google Scholar
  17. Odeh, R.E., & Fox, M. (1991).Sample size choice (2nd ed.). New York, NY: Marcel Dekker.Google Scholar
  18. Pearson, E.S. (1929). Some notes on sampling tests with two variables.Biometrika, 21, 337–360.Google Scholar
  19. Pearson, E.S. (1931). The test of significance for the correlation coefficient.Journal of the American Statistical Association, 26, 128–134.Google Scholar
  20. Rider, P.R. (1932). The distribution of the correlation coefficient in small samples.Biometrika, 24, 382–403.Google Scholar
  21. Schmidt, F. (1996). Statistical significance testing and cumulative knowledge in Psychology: Implications for training of researchers.Psychological Methods, 1, 115–119.Google Scholar
  22. Stuart, A., & Ord, J.K. (1994).Kendall's advanced theory of statistics, Vol. 1, Distribution theory. New York, NY: Halsted Press.Google Scholar
  23. Zar, J.H. (1984).Biostatistical analysis (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar

Copyright information

© The Psychometric Society 2000

Authors and Affiliations

  • Douglas G. Bonett
    • 1
  • Thomas A. Wright
    • 2
  1. 1.Department of StatisticsIowa State UniversityAmes
  2. 2.University of NevadaReno

Personalised recommendations