Skip to main content
Log in

Quartic rotation criteria and algorithms

  • Published:
Psychometrika Aims and scope Submit manuscript


Most of the currently used analytic rotation criteria for simple structure in factor analysis are summarized and identified as members of a general symmetric family of quartic criteria. A unified development of algorithms for orthogonal and direct oblique rotation using arbitrary criteria from this family is given. These algorithms represent fairly straightforward extensions of present methodology, and appear to be the best methods currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  • Carroll, J. B. (1953). An analytical solution for approximating simple structure in factor analysis.Psychometrika, 18, 23–38.

    Google Scholar 

  • Carroll, J. B. (1957). Biquartimin criterion for rotation to oblique simple structure in factor analysis.Science, 126, 1114–1115.

    Google Scholar 

  • Carroll, J. B. (1960). IBM 704 program for generalized analytic rotation solution in factor analysis. Unpublished manuscript, Harvard University.

  • Crawford, C. B., & Ferguson, G. A. (1970). A general rotation criterion and its use in orthogonal rotation.Psychometrika, 35, 321–332.

    Google Scholar 

  • Ferguson, G. A. (1954). The concept of parsimony in factor analysis.Psychometrika, 19, 281–290.

    Google Scholar 

  • Harman, H. H. (1960).Modern factor analysis. Chicago: University of Chicago Press.

    Google Scholar 

  • Harman, H. H. (1976). Modern factor analysis (3rd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Hendrickson, A. E., & White, P. O. (1964). Promax: A quick method for rotation to oblique simple structure.British Journal of Statistical Psychology, 17, 65–70.

    Google Scholar 

  • Jennrich, R. I. (1970). Orthogonal Rotation Algorithms,Psychometrika, 35, 229–335.

    Google Scholar 

  • Jennrich, R. I., & Sampson, P. F. (1966). Rotation for simple loadings.Psychometrika, 31, 313–323.

    Google Scholar 

  • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis.Psychometrika, 23, 187–200.

    Google Scholar 

  • Kaiser, H. F. (1959). Computer program for varimax rotation in factor analysis.Educational and Psychological Measurement, 19, 413–420.

    Google Scholar 

  • Luenberger, D. G. (1973).Introduction to linear and nonlinear programming. Reading: Addison-Wesley.

    Google Scholar 

  • Nevels, K. (1986). A direct solution for pairwise rotations in Kaiser's varimax method.Psychometrika, 51, 327–329.

    Google Scholar 

  • Newhaus, J. O., & Wrigley, C. (1954). The quartimax method: An analytic approach to orthogonal simple structure.British Journal of Mathematical and Statistical Psychology, 7, 81–91.

    Google Scholar 

  • Saunders, D. R. (1953). An analytic method for rotation to orthogonal simple structure (Research Bulletin, RB 53-10). Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Saunders, D. R. (1961). The rationale for an “oblimax” method of transformation in factor analysis.Psychometrika, 26, 317–324.

    Google Scholar 

  • ten Berge, J. M. F. (1984). A joint treatment of varimax rotation and the problem of diagonalizing symmetric matricies simultaneously in the least-squares sense.Psychometrika, 43, 433–435.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

The research done by R. I. Jennrich was supported by NSF Grant MCS-8301587.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarkson, D.B., Jennrich, R.I. Quartic rotation criteria and algorithms. Psychometrika 53, 251–259 (1988).

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI:

Key words