, Volume 51, Issue 3, pp 429–451

Extended similarity trees

  • James E. Corter
  • Amos Tversky


Proximity data can be represented by an extended tree, which generalizes traditional trees by including marked segments that correspond to overlapping clusters. An extended tree is a graphical representation of the distinctive features model. A computer program (EXTREE) that constructs extended trees is described and applied to several sets of conceptual and perceptual proximity data.

Key words

proximities nonhierarchical clustering additive trees feature models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arabie, P., & Carroll, J. D. (1980). MAPCLUS: A mathematical programming approach to fitting the ADCLUS model.Psychometrika, 45, 211–235.Google Scholar
  2. Buneman, P. (1971). The recovery of trees from measures of dissimilarity. In F. R. Hodson, D. G. Kendall, & P. Tautu (Eds.),Mathematics in the archeological and historical sciences. Edinburgh: Edinburgh University Press.Google Scholar
  3. Bynon, T. (1980).Historical linguistics. Cambridge: Cambridge University Press.Google Scholar
  4. Chernoff, H. (1973). The use of faces to represent points ink-dimensional space graphically.Journal of the American Statistical Association, 68, 361–368.Google Scholar
  5. Corter, J. E. (1982). ADDTREE/P: A PASCAL program for fitting additive trees based on Sattath and Tversky's ADDTREE algorithm.Behavior Research Methods and Instrumentation, 14(3), 353–354.Google Scholar
  6. Cunningham, J. P. (1978). Free trees and bidirectional trees as representations of psychological distance.Journal of Mathematical Psychology, 17, 165–188.Google Scholar
  7. Freedman, D., & Lane, D. (1983a). Significance testing in a nonstochastic setting. In P. Bickel, K. Doksum, & J. L. Hodges, Jr. (Eds.),Lehmann Festschrift. Belmont, CA: Wadsworth.Google Scholar
  8. Freedman, D., & Lane, D. (1983b). A nonstochastic interpretation of reported significance levels.Journal of Business & Economic Statistics, 1, 292–298.Google Scholar
  9. Jardine, N., & Sibson, R. (1971).Mathematical taxonomy. London: Wiley.Google Scholar
  10. Johnson, S. C. (1967). Hierarchical clustering schemes.Psychometrika, 32, 241–254.Google Scholar
  11. Keren, G., & Baggen, S. (1981). Recognition models of alphanumeric characters.Perception & Psychophysics, 29, 234–246.Google Scholar
  12. Kruskal, J. B., Young, F. W., & Seery, J. B. (1977). How to use KYST-2A, a very flexible program to do multidimensional scaling and unfolding. Unpublished manuscript, AT&T Bell laboratories.Google Scholar
  13. Mervis, C. B., Rips, L. J., Rosch, E., Shoben, E. J., & Smith, E. E. (1975). Unpublished data.Google Scholar
  14. Pruzansky, S., Tversky, A., & Carroll, J. D. (1982). Spatial versus tree representation of proximity data.Psychometrika, 47, 3–24.Google Scholar
  15. Restle, F. (1959). A metric and an ordering on sets.Psychometrika, 24, 207–220.Google Scholar
  16. Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories.Cognitive Psychology, 7, 573–605.Google Scholar
  17. Sattath, S., & Tversky, A. (1977). Additive similarity trees.Psychometrika, 42, 319–345.Google Scholar
  18. Sattath, S., & Tversky, A. (1985). On the relation between common and distinctive feature models. Unpublished manuscript, Stanford University.Google Scholar
  19. Shepard, R. N., & Arabie, P. (1979). Additive clustering: Representation of similarities as combinations of discrete overlapping properties.Psychological Review, 86, 87–123.Google Scholar
  20. Shepard, R. N., Kilpatric, D. W., & Cunningham, J. P. (1975). The internal representation of numbers.Cognitive Psychology, 7, 82–138.Google Scholar
  21. Sokal, R. R., & Sneath, P. H. A. (1963).Principles of numerical taxonomy. San Francisco: W. H. Freeman.Google Scholar
  22. Tischler, J. (1973).Glottochronologie und lexikostatistik. Innsbruck: Innsbrucker Beitrage zur Sprachwissenschaft.Google Scholar
  23. Tversky, A. (1977). Features of similarity.Psychological Review, 84, 327–352.Google Scholar
  24. Tversky, A., & Sattath, S. (1979). Preference trees.Psychological Review, 86, 542–573.Google Scholar

Copyright information

© The Psychometric Society 1986

Authors and Affiliations

  • James E. Corter
    • 2
  • Amos Tversky
    • 1
  1. 1.Stanford UniversityUSA
  2. 2.Teachers CollegeColumbia UniversityNew York

Personalised recommendations