Psychometrika

, Volume 52, Issue 1, pp 43–59 | Cite as

Analytic smoothing for equipercentile equating under the common item nonequivalent populations design

  • Michael J. Kolen
  • David Jarjoura
Article

Abstract

A cubic spline method for smoothing equipercentile equating relationships under the common item nonequivalent populations design is described. Statistical techniques based on bootstrap estimation are presented that are designed to aid in choosing an equating method/degree of smoothing. These include: (a) asymptotic significance tests that compare no equating and linear equating to equipercentile equating; (b) a scheme for estimating total equating error and for dividing total estimated error into systematic and random components. The smoothing technique and statistical procedures are explored and illustrated using data from forms of a professional certification test.

Key words

equating equipercentile equating equating error bootstrap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angoff, W. H. (1971). Scales, norms, and equivalent scores. In R. L. Thorndike (Ed.),Educational measurement (2nd ed.). Washington, DC: American Council on Education.Google Scholar
  2. Angoff, W. H. (1982). Summary and derivation of equating methods used at ETS. In P. W. Holland & D. B. Rubin (Eds.),Test equating. New York: Academic Press.Google Scholar
  3. Beran, R. (1984). Bootstrap methods in statistics.Jahresbericht der Deutschen Mathematiker-Vereiningung, 86, 14–30.Google Scholar
  4. Bickel, P. J., & Freedman, D. A. (1981). Some asymptotic theory for the bootstrap.The Annals of Statistics, 9, 1196–1217.Google Scholar
  5. Blommers, P. J., & Forsyth, R. A. (1977).Elementary statistical methods in psychology and education. Boston, MA: Houghton Mifflin.Google Scholar
  6. Braun, H. I., & Holland, P. W. (1982). Observed score test equating: A mathematical analysis of some ETS equating procedures. In P. W. Holland & D. B. Rubin (Eds.),Test equating. New York: Academic Press.Google Scholar
  7. Efron, B. (1981). Nonparametric estimates of the standard error: The jackknife, the bootstrap, and other methods.Biometrika, 68, 589–599.Google Scholar
  8. Efron, B. (1982).The jackknife, the bootstrap, and other resampling plans. Philadelphia, PA: Society for Industrial and Applied Mathematics.Google Scholar
  9. Freedman, D. A. (1981). Bootstrapping regression models.The Annals of Statistics, 9, 1218–1228.Google Scholar
  10. Jarjoura, D., & Kolen, M. J. (1985). Standard errors of equipercentile equating for the common item nonequivalent populations design.Journal of Educational Statistics, 10, 143–160.Google Scholar
  11. Klein, L. W., & Jarjoura, D. (1985). The importance of content representation for common-item equating with nonrandom groups.Journal of Educational Measurement, 22, 197–206.Google Scholar
  12. Kolen, M. J. (1984). Effectiveness of analytic smoothing in equipercentile equating.Journal of Educational Statistics, 9, 25–44.Google Scholar
  13. Kolen, M. J. (1985). Standard errors of Tucker equating.Applied Psychological Measurement, 9, 209–223.Google Scholar
  14. Lord, F. M. (1980).Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  15. Morrison, D. F. (1976).Multivariate statistical methods (2nd ed.). New York: McGraw Hill.Google Scholar
  16. Petersen, N. S., Marco, G. L., & Stewart, E. E. (1982). A test of the adequacy of linear score equating models. In P. W. Holland & D. B. Rubin (Eds.),Test equating. New York: Academic Press.Google Scholar
  17. Rao, C. R. (1973).Linear statistical inference and its applications (2nd ed). New York: Wiley.Google Scholar
  18. Reinsch, C. H. (1967). Smoothing by spline functions.Numerische Mathematik, 10, 177–183.Google Scholar
  19. Singh, K. (1981). On the asymptotic accuracy of Efron's bootstrap.The Annals of Statistics, 9, 1187–1195.Google Scholar
  20. Tapia, R. A., & Thompson, J. R. (1978).Nonparametric probability density estimation. Baltimore: The Johns Hopkins University Press.Google Scholar
  21. Yang, S. (1985). A smooth nonparametric estimator of a quantile function.Journal of the American Statistical Association, 80, 1004–1011.Google Scholar

Copyright information

© The Psychometric Society 1987

Authors and Affiliations

  • Michael J. Kolen
    • 1
  • David Jarjoura
    • 2
  1. 1.Measurement Research DepartmentThe American College Testing ProgramIowa City
  2. 2.Northeastern Ohio Universities College of MedicineUSA

Personalised recommendations