Psychometrika

, Volume 46, Issue 1, pp 9–28 | Cite as

Multidimensional successive categories scaling: A maximum likelihood method

  • Yoshio Takane
Article

Abstract

A single-step maximum likelihood estimation procedure is developed for multidimensional scaling of dissimilarity data measured on rating scales. The procedure can fit the euclidian distance model to the data under various assumptions about category widths and under two distributional assumptions. The scoring algorithm for parameter estimation has been developed and implemented in the form of a computer program. Practical uses of the method are demonstrated with an emphasis on various advantages of the method as a statistical procedure.

Key words

similarity ratings maximum likelihood multidimensional scaling (MDS) method of successive categories 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference notes

  1. Takane, Y., & Carroll, J. D.Maximum likelihood multidimensional scaling from directional rankings of similarities. Paper submitted for publication, 1980.Google Scholar
  2. Jennrich, R. I., & Moore, R. H.Maximum likelihood estimation by means of nonlinear least squares (RB-75-7). Princeton, N.J.: Educational Testing Service, 1975.Google Scholar
  3. Takane, Y., & Carroll, J. D.On the robustness of AIC in the context of maximum likelihood multidimensional scaling. Manuscript in preparation.Google Scholar
  4. Steiger, J. H., & Lind, J. M.Statistically based tests for the number of common factors. Handout for a paper presented at the Psychometric Society meeting, Iowa, 1980.Google Scholar
  5. Krantz, D. H., & Tversky, A.Similarities of rectangles: An analysis of subjective dimensions. Ann Arbor, Mich.: Michigan Mathematical Psychology Program 73–8, 1973.Google Scholar
  6. Okada, A.Nonmetric multidimensional scaling and rating scales. San Diego, California: Proceedings of the U.S.-Japan Seminar on Theory, Methods and Applications of Multidimensional Scaling and Related Techniques, 1975, 141–150.Google Scholar

References

  1. Akaike, H. Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.),The second international symposium on information theory. Budapest: Akadémiai Kiado, 1973.Google Scholar
  2. Akaike, H. A new look at the statistical model identification.IEEE Transactions on Automatic Control, 1974,19, 716–723.Google Scholar
  3. Akaike, H. On entropy maximization principle. P. R. Krishnaiah (Ed.).Applications of Statistics. Holland: North-Holland Publishing Co., 1977.Google Scholar
  4. Beck, J. V., & Arnold, K. J.Parameter estimation in engineering and science. New York: Wiley, 1977.Google Scholar
  5. Bentler, P. M., & Weeks, D. G. Restricted multidimensional scaling models.Journal of Mathematical Psychology, 1978,17, 138–151.Google Scholar
  6. Bloxom, B. Constrained multidimensional scaling inN spaces.Psychometrika, 1978,43, 397–408.Google Scholar
  7. Bock, R. D., & Jones, L. V.The measurement and prediction of judgment and choice. San Francisco: Holden Day, 1968.Google Scholar
  8. Carroll, J. D. Spatial, non-spatial and hybrid models of scaling.Psychometrika, 1976,41, 439–463.Google Scholar
  9. Green, P. E., & Rao, V. R. Rating scales and information recovery—how many scales and response categories to use.Journal of Marketing, 1970,34, 33–39.Google Scholar
  10. Hastings, C.Approximation for digital computers. Princeton, NJ: Princeton University Press, 1955.Google Scholar
  11. Johnson, S. C. Hierarchical clustering schemes.Psychometrika, 1967,32, 241–254.Google Scholar
  12. Kitagawa, G. On the use of AIC for the detection of outliers.Technometrics, 1979,21, 193–199.Google Scholar
  13. Krantz, D. H., & Tversky, A. Similarity of rectangles; An analysis of subjective dimensions.Journal of Mathematical Psychology, 1975,12, 4–34.Google Scholar
  14. Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Psychometrika, 1964,29, 1–27.Google Scholar
  15. Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method.Psychometrika, 1964,29, 115–129.Google Scholar
  16. Kruskal, J. B. & Wish, M.Multidimensional scaling. Beverly Hills, Calif.: Sage Publications, 1978.Google Scholar
  17. Lord, F. M., & Novick, M. R.Statistical theories of mental test scores. Reading, Massachusetts: Addison-Wesley, 1968.Google Scholar
  18. Messick, S. J. An empirical evaluation of multidimensional successive categories.Psychometrika, 1956,21, 367–375.Google Scholar
  19. Nakatani, L. H. Confusion-choice model for multidimensional psychophysics.Journal of Mathematical Psychology, 1972,9, 104–127.Google Scholar
  20. Ramsay, J. O. The effect of number of categories in rating scales on precision of estimation of scale values.Psychometrika, 1973,38, 513–532.Google Scholar
  21. Ramsay, J. O. Maximum likelihood estimation in multidimensional scaling.Psychometrika, 1977,42, 241–266.Google Scholar
  22. Ramsay, J. O. Confidence regions for multidimensional scaling analysis.Psychometrika, 1978,43, 145–160.Google Scholar
  23. Ramsay, J. O. Joint analysis of direct ratings, pairwise preferences and dissimilarities.Psychometrika, 1980a,45, 149–165.Google Scholar
  24. Ramsay, J. O. Some small sample results for maximum likelihood estimation in multidimensional scaling.Psychometrika, 1980b,45, 139–144.Google Scholar
  25. Rao, C. R.Advanced statistical methods in biometric research. New York: Wiley, 1952.Google Scholar
  26. Rothkopf, E. Z. A measure of stimulus similarity and errors in some paired associate learning.Journal of Experimental Psychology, 1957,53, 94–101.Google Scholar
  27. Sakamoto, Y. & Akaike, H. Analysis of cross classified data by AIC.Annals of the Institute of Statistical Mathematics, 1978,B30, 185–197.Google Scholar
  28. Schönemann, P. H. Similarity of rectangles.Journal of Mathematical Psychology, 1977,16, 161–165.Google Scholar
  29. Schönemann, P. H., & Tucker, L. R. A maximum likelihood solution for the method of successive intervals allowing for unequal stimulus dispersions.Psychometrika, 1967,32, 403–418.Google Scholar
  30. Schwartz, G. Estimating the dimensions of a model.The Annals of Statistics, 1978,6, 461–464.Google Scholar
  31. Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function, I & II.Psychometrika, 1962,27, 125–140, & 219–246.Google Scholar
  32. Shimizu, R. Entropy maximization principle and selection of the order of an autoregressive Gaussian process.Annals of the Institute of Statistical Mathematics, 1978,A30, 263–270.Google Scholar
  33. Takane, Y. A maximum likelihood method for nonmetric multidimensional scaling: I. The case in which all empirical pairwise orderings are independent—theory.Japanese Psychological Research, 1978a,20, 7–17.Google Scholar
  34. Takane, Y. A maximum likelihood method for nonmetric multidimensional scaling: II. The case in which all empirical pairwise orderings are independent—evaluations.Japanese Psychological Research, 1978b,20, 105–114.Google Scholar
  35. Thurstone, L. L.The measurement of values. Chicago, Ill.: University of Chicago Press, 1959.Google Scholar
  36. Torgerson, W. S. Multidimensional scaling: I. Theory and method.Psychometrika, 1952,17, 401–419.Google Scholar
  37. Torgerson, W. S.Theory and methods of scaling. New York: Wiley, 1958.Google Scholar
  38. Tversky, A. Features of similarity.Psychological Review, 1977,84, 327–352.Google Scholar
  39. Wilks, S. S.Mathematical statistics. New York: Wiley, 1962.Google Scholar
  40. Young, G., & Householder, A. S. Discussion of a set of points in terms of their mutual distances.Psychometrika, 1938,3, 19–22.Google Scholar
  41. Zinnes, J. L., & Wolff, R. P. Single and multidimensional same-different judgments.Journal of Mathematical Psychology, 1977,16, 30–50.Google Scholar

Copyright information

© The Psychometric Society 1981

Authors and Affiliations

  • Yoshio Takane
    • 1
  1. 1.Department of PsychologyMcGill UniversityMontrealCanada

Personalised recommendations