Acta Applicandae Mathematica

, Volume 4, Issue 1, pp 65–91 | Cite as

One-dimensional Schrödinger operators with random potentials: A survey

  • René Carmona
Article

Abstract

We present and discuss recent results on the spectral properties of random Schrödinger operators. This survey paper deals only with the one-dimensional case. The explanation for this restriction has to be found in the efficiency of the combination of the theory of ordinary differential equations (ODE for short) and of the classical theory of stochastic processes and in the fact that most of the literature concerns this case.

AMS (MOS) subject classifications (1980)

60H25 82A57 

Key words

Spectral theory random Schrödinger operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, Ph. (1958) ‘Absence of Diffusion in Certain Random Lattices’,Phys. Rev. 109, 1492–1505.Google Scholar
  2. Avron, J. and Simon, B. (1982) ‘Singular Continuous Spectrum for a Class of Almost Periodic Jacobi Matrices’ (preprint).Google Scholar
  3. Avron, J. and Simon, B. (1983) ‘Almost Periodic Schrödinger Operators: II. The Integrated Density of States’,Duke Math. J. 50, 369–391.CrossRefMathSciNetGoogle Scholar
  4. Bellissard, J., Lima, R., and Scuoppola, E. (1983) ‘Localization in ν-Dimensional Incommensurate Structures-,Commun. Math. Phys. 88, 465–477.Google Scholar
  5. Bellissard, J., Lima, R., and Testard, D. (1983) ‘A Metal-Insulator Transition for the Almost Mathieu Model’,Commun. Math. Phys. 88, 207–234.MathSciNetGoogle Scholar
  6. Bellissard J. and Simon, B. (1982) ‘Cantor Spectrum for the Almost Mathieu Equation’,J. Funct. Anal. 48, 408–419.CrossRefMathSciNetGoogle Scholar
  7. Ben-Artzi, M. (1985) ‘Remarks on Schrödinger Operators with an Electric Field and Deterministic Potential’J. Math. Anal. Appl. (to appear).Google Scholar
  8. Benderskîî, M. M. and Pastur, L. A. (1969) ‘Calculation of the Average Number of States in a Model Problem’,Sov. Phys. JETP 30, 158–162.Google Scholar
  9. Benderskîî, M. M. and Pastur, L. A. (1970) ‘On the Spectrum of the One-Dimensional Schrödinger Equation with a Random Potential’,Math. Stoorn. 82, 245–256.Google Scholar
  10. Bentosela, F., Carmona, R., Duclos, P., Simon, B., Souillard, B., and Weder, R. (1983) ‘Schrödinger Operators with an Electric Field and Random or Deterministic Potentials’,Commun. Math. Phys. 88, 387–397.CrossRefMathSciNetGoogle Scholar
  11. Brossard, J. (1983) ‘Perturbations aléatoires de potentials périodiques’, (preprint).Google Scholar
  12. Carmona, R. (1982) Exponential Localization in One-Dimensional Disordered Systems’,Duke Math. J. 49, 191–213.CrossRefMATHMathSciNetGoogle Scholar
  13. Carmona, R. (1983) ‘One-Dimensional Schrödinger Operators with Random or Deterministic Potentials: New Spectral Types’,J. Funct. Anal. 51, 229–258.CrossRefMATHMathSciNetGoogle Scholar
  14. Carmona, R. (1984a) ‘One-Dimensional Schrödinger Operators with Random Potentials’, Proc. VIIth Intern. Conf. Math. Phys.Physica 124A, 181–188.MathSciNetGoogle Scholar
  15. Carmona, R. (1984b) ‘The Essential Support of the Absolutely Continuous Spectral Measures of Ergodic Operators is Deterministic’ (preprint).Google Scholar
  16. Carmona, E. (1984c) ‘Random Schrödinger Operators’, Ecole d'été de probabilités, Saint Flour (1984) to appear inLectur Notes in Math., Springer-Verlag, New York.Google Scholar
  17. Casher, A. and Lebowitz, J. L. (1971) ‘Heat Flow in Regular and Disordered Harmonic Chains’,J. Math. Phys 12, 1701–1711.CrossRefGoogle Scholar
  18. Coddington, E. A. and Levinson, N. (1955)Theory of Ordinary Differential Equations, McGraw-Hill, New York.Google Scholar
  19. Constantinescu, F., Fröich, J., and Spencer, T. (1983) ‘Analyticity of the Density of States and Replica Method for Random Schrödinger Operators on a Lattice’,J. Stat. Phys. 34, 571–596.Google Scholar
  20. Craig, W. (1983) ‘Pure Point Spectrum for Discrete Almost Periodic Schrödinger Operators’,Commun. Math. Phys. 88, 113–131.CrossRefMATHMathSciNetGoogle Scholar
  21. Craig, W. and Simon, B. (1983a) ‘Subharmonicity of the Lyapunov Index’,Duke Math. J. 50, 551–559.CrossRefMathSciNetGoogle Scholar
  22. Craig, W. and Simon, B. (1983b) ‘Log Hölder Continuity of the Integrated Density of States for Stochastic Jacobi Matrices’,Commun. Math. Mhys. 90, 207–218.MathSciNetGoogle Scholar
  23. Deift, P. and Simon, B. (1983) ‘Almost Periodic Schrödinger Operators. III. The Absolute Continuous Spectrum’,Commun. Math. Phys. 90, 389–411.CrossRefMathSciNetGoogle Scholar
  24. Delyon, F., Kunz, H., and Souillard, B. (1983) ‘One-Dimensional Wave Equations in Random Media’,J. Phys. A16, 25.CrossRefMathSciNetGoogle Scholar
  25. Delyon, F. and Souillard, B. (1983) ‘The Rotation Number for Finite Difference Operators and its Properties’,Commun. Math. Phys. 89, 415CrossRefMathSciNetGoogle Scholar
  26. Delyon, F., Simon, B. and Souillard, B. (1984) ‘From Power Law Localized to Extended States in a Disordered System’.Phys. Rev. Lett. 52, 2187.CrossRefGoogle Scholar
  27. Derriennic, Y. (1975) ‘Sur le théorème ergodique sous additif’,C.R. Acad. Sci. Paris ser. A 282, 985–988.MathSciNetGoogle Scholar
  28. Dinaburg, E. I. and Sinai, Ya. G. (1976) ‘The One-Dimensional Schrödinger Equation with a Quasi-periodic Potential’,Funct. Anal. Appl. 9, 279–289.CrossRefGoogle Scholar
  29. Frölich, J. and Spencer, T. (1983) ‘Absence of Diffusion in the Anderson Tight Binding Model for Large Disorder or Low Energy’,Commun. Math. Phys. 88, 151–184.Google Scholar
  30. Fukushima, H. (1974) ‘On the Spectral Distribution of a Disordered System and the Range of a Random Walk’,Osaka J. Math. 11, 73–85.MATHMathSciNetGoogle Scholar
  31. Fukushima, M., Nagai, H., and Nakao, S. (1975) ‘On an Asymptotic Property of Spectra of a Random Difference Operator’,Proc. Japan. Acad. 51, 100–102.MathSciNetGoogle Scholar
  32. Fukushima, M. and Nakao, S. (1977) ‘On Spectra of the Schrödinger Operator with a White Gaussian Noise Potential’,Z. Wahrschein. verw. Gebiete 37, 267–274.MathSciNetGoogle Scholar
  33. Furstenberg, H. (1963) ‘Non-commuting Random Products’,Trans. Amer. Math. Soc. 108, 377–428.MATHMathSciNetGoogle Scholar
  34. Furstenberg, H. and Kesten, H. (1960) ‘Products of Random Matrices’,Ann. Math. Stat. 31, 457–569.MathSciNetGoogle Scholar
  35. Gol'sheid, I. Ja. (1980) ‘Asymptotic Properties of the Product of Random Matrices Depending on a Parameter in Multicomponents Systems.Advances in Probability vol. 8, Marcel Dekker, pp. 239–283.Google Scholar
  36. Gol'sheid, I. Ja. and Molčanov, S. A. (1976) ‘On Mott's Problem’,Sov. Math. Dokl. 17, 1369–1373.Google Scholar
  37. Gol'sheid, I. Ja., Molčanov, S. A., and Pastur, L. A. (1977) ‘A Pure Point Spectrum of the Stochastic One-Dimensional Schrödinger Operator’,Funct. Anal. Appl. II.1, 1–10.Google Scholar
  38. Grenkova, L. N., Molčanov, S. A., and Sudarev, Ju. N. (1983) ‘On the Basic States of One-Dimensional Disordered Structures’,Commun. Math. Phys. 90, 101–123.CrossRefGoogle Scholar
  39. Guivarch', Y. (1981) ‘Exponants de Liapunov des produits de matrices aléatoires en dépendance Markovienne’,C.R. Acad. Sci. Paris ser A. 292, 327–329.MATHMathSciNetGoogle Scholar
  40. Herbst, I. and Howland, J. (1981) ‘The Stark Ladder and Other One-Dimensional External Field Problems’,Commun. Math. Phys. 80, 23.MathSciNetGoogle Scholar
  41. Hoelden, H. and Martinelli, F. (1984) ‘A Remark on the Absence of Diffusion Near the Bottom of the Spectrum for a Random Schrödinger Operator onL (ℝ v),Commun. Math. Phys. 93, 197–217.Google Scholar
  42. Ishii, K. (1973). ‘Localization of Eigenstates and Transport Phenomena in the One-Dimensional Disordered System’,Suppli. Progr. Theor. Phys. 53, 77–138.Google Scholar
  43. Johnson, R. and Moser J. (1982) ‘The Rotation Number for Almost Periodic Potentials’,Commun. Math. Phys. 84, 403–438.CrossRefMathSciNetGoogle Scholar
  44. Katznelson, Y. and Weiss, B. (1982) ‘A Simple Proof of Some Ergodic Theorem’,Israel J. Math. 42, 291–296.MathSciNetGoogle Scholar
  45. Kirsch, W. and Martinelli, F. (1982a) ‘On the Ergodic Properties of the Spectrum of General Random Operators’,J. Reine Angew. Math. 334, 141–156.MathSciNetGoogle Scholar
  46. Krisch, W. and Martinelli, F. (1982b) ‘On the Spectrum of Schrödinger Operators with a Random Potential’,Commun. Math. Phys. 85, 329–350.Google Scholar
  47. Krisch, W. and Martinelli, F. (1982c) ‘On the Density of States of Schrödinger Operators with a Random Potential’,J. Phys. A15, 2139–2156.MathSciNetGoogle Scholar
  48. Kirsch, W. and Martinelli, F. (1983a) ‘Large Deviations and Lifschitz Singularity of the Integrated Density of States of Random Hamiltonians’,Commun. Math. Phys. 89, 27–40.CrossRefMathSciNetGoogle Scholar
  49. Kirsch, W. and Martinelli, F. (1983b) ‘On the Essential Self-Adjointness of Stochastic Schrödinger Operators’,Duke Math. J. 50, 1255–1260, erratumibid. Kirsch, W. and Martinelli, F. (1983b) ‘On the Essential Self-Adjointness of Stochastic Schrödinger Operators’,Duke Math. J. 50, 1255–1260.CrossRefMathSciNetGoogle Scholar
  50. Kotani, S. (1976) ‘On Asymptotic Behaviour of the Spectra of a One-Dimensional Hamiltonian with a Certain Random Coefficient’,Publ. Res. Inst. Math. Sci. Kyoto Univ. 12, 447–492.MATHMathSciNetGoogle Scholar
  51. Kotani, S. (1983) ‘Ljapunov Indices Determine Absolute Continuous Spectra of Stationary One-Dimensional Schrödinger Operators’ (preprint).Google Scholar
  52. Kotani, S. (1984) ‘Support Theorems for Random Schrödinger Operats’ (preprint).Google Scholar
  53. Kunz, H. and Souillard, B. (1980) ‘Sur le spectre des opérateurs aux différences finies aléatoires’,Commun. Math. Phys. 78, 201–246.CrossRefMathSciNetGoogle Scholar
  54. Kunz, H. and Souillard, B. (1983) ‘The Localization Transition on the Bethe Lattice’,J. Phys. (Paris) Lett. 44, 411–414.Google Scholar
  55. Kunz, H. and Souillard, B. (in Prep), ‘Localization Theory, A Review’,Google Scholar
  56. Lacroix, J. (1983) ‘Singularité du spectre de l'opérateur de Schrödinger aléatoire dans un ruban ou un demi-ruban’,Ann Inst. H. Poincaré A38, 385–399.MATHMathSciNetGoogle Scholar
  57. Le Page, E. (1983) ‘Repartition d'états pour des matrices de Jacobi à coefficients aléatoires’, inLecture Notes in Math., Springer-Verlag, New York.Google Scholar
  58. Levitan, B. M. and Sargsjan, I. S. (1976),Introduction to Spectral Theory, Transl. of Math. Monographs, vol. 39, Amer. Math. Soc., Providence, R.I.Google Scholar
  59. Lifshitz, I. M. (1965) ‘Energy Spectrum Structure and Quantum States of Disordered Condensed Systems’,Sov. Phys. Usp. 7, #4.Google Scholar
  60. Martinelli, F. and Scuoppola, E. (1984) in preparation.Google Scholar
  61. Molčanov, S. A. (1978) ‘The Structure of Eigenfunctions of One-Dimensional Unordered Structures’,Math. U.S.S.R. Izv. 12–1, 69–101.Google Scholar
  62. Molčanov, S. A. (1981) ‘The Local Structure of the Spectrum of the One-Dimensional Schrödinger Operator’,Commun. Math. Phys. 78, 429–466.Google Scholar
  63. Moser, J. (1981), ‘An Example of a Schrödinger Equation with Almost Periodic Potential and Nowhere Dense Spectrum’,Commun. Math. Helv. 56, 198–224.MATHGoogle Scholar
  64. Nagai, H. (1977) ‘On an Exponential Character of the Spectral Distribution Function of a Random Difference Operator’,Osaka J. Math. 14, 111–116.MATHMathSciNetGoogle Scholar
  65. Nakao, S. (1977) ‘On the Spectrum Distribution of the Schrödinger Operator with a Random Potential’,Japan J. Math. 3, 111–139.MATHMathSciNetGoogle Scholar
  66. Okura, H. (1979) ‘On the Spectral Distribution of Certain Integro-differential Operators with Random Potential’,Osaka J. Math. 16, 633–666.MATHMathSciNetGoogle Scholar
  67. Oxtoby, J. C. (1952)‘Ergodic Sets’, Bull. Amer. Math. Soc. 58, 116–136.MATHMathSciNetGoogle Scholar
  68. Pastur, L. A. (1972) ‘On the Distribution of the Eigenvalues of the Schrödinger Equation with a Random Potential’,Funct. Anal. Appl. 6, 163–165.CrossRefMATHMathSciNetGoogle Scholar
  69. Pastur, L. A. (1973) ‘Spectra of Random Self-Adjoint Operators’,Russ. Math. Surv. 28, 1–67.CrossRefMATHMathSciNetGoogle Scholar
  70. Pastur, L. A. (1974), ‘On the Spectrum of the Random Jacobi Matrices and the Schrödinger Equation on the Whole Axis with Random Potential’, preprint, (Russian) Kharkov.Google Scholar
  71. Pastur, L. A. (1980) ‘Spectral Properties of Disordered Systems in the One-Body Approximation’,Commun. Math. Phys. 75, 197–196.CrossRefMathSciNetGoogle Scholar
  72. Pearson, D. B. (1978), ‘Singular Continuous Measures in Scattering Theory’,Commun. Math. Phys. 60, 13–36.CrossRefMATHMathSciNetGoogle Scholar
  73. Pöschel, J. (1983) ‘Examples of Discrete Schrödinger Operators with Pure Point Spectrum’,Commun. Math. Phys. 88, 447–463.CrossRefMATHGoogle Scholar
  74. Reed, M. and Simon, B. (1975)Methods of Modern Mathematical Physics II, Fourier Analysis, Self-Adjointness, Academic Press, New York.Google Scholar
  75. Reed, M. and Simon, B. (1978)Methods of Modern Mathematical Physics IV, Analysis of Operators, Academic Press, New York.Google Scholar
  76. Reed, M. and Simon, B. (1981)Methods of Modern Mathematical Physics I, Functional Analysis, 2nd edn., Academic Press, New York.Google Scholar
  77. Režnikova, A. Ja. (1981) ‘The Central Limit Theorem for the Spectrum of the Random One-Dimensional Schrödinger Operator’,J. Stat. Phys. 25, 291–308.Google Scholar
  78. Romiero, M. and Wreszinski, W. (1979) ‘On the Lifshitz Singularity and the Tailing in the Density of States for Random Lattice Systems’,J. Stat. Phys. 21, 169–179.Google Scholar
  79. Royer, G. (1982), ‘Etude des opérateurs de Schrödinger à potentiel aléatoire en dimension un’,Bull. Soc. Math. France 110, 27–48.MATHMathSciNetGoogle Scholar
  80. Rozanov, Yu. A. (1967)Stationary Random Processes, Holden Day, San Francisco.Google Scholar
  81. Ruelle, D. (1979) ‘Ergodic Theory of Differentiable Dynamical Systems’,Publ. Math. I.H.E.S. 50, 275–306.Google Scholar
  82. Simon, B. (1982a) ‘Almost Periodic Schrödinger Operators: A Review’,Adv. Appl. Math. 3, 463–490.CrossRefMATHGoogle Scholar
  83. Simon, B. (1982b) ‘Schrödinger Semigroups’,Bull. Amer. Math. Soc. 7, 447–526.MATHMathSciNetGoogle Scholar
  84. Simon, B. (1982c) ‘Some Jacobi Matrices with Decaying Potential and Dense Point Spectrum’,Commun. Math. Phys. 87, 253–258.CrossRefMATHGoogle Scholar
  85. Simon, B. (1983) ‘Kotani Theory for One-Dimensional Stochastic Jacobi Matrices’,Commun. Math. Phys. 89, 227–000.CrossRefMATHGoogle Scholar
  86. Simon, B. (1984) ‘Lifshitz Tails for the Anderson Model’ (preprint).Google Scholar
  87. Slivnyak, I. M. (1966) ‘Spectrum of the Schrödinger Operator with Random Potential’,Zh. v ychist. Mat. Fiz 6, 1104–1108.Google Scholar
  88. Šubin, M. A. (1982) ‘The Density of States of Selfadjoint Elliptic Operators with Almost Periodic Coefficients’,Amer. Math. Soc. Transl. 118, 307–339.Google Scholar
  89. Thompson, M. (1983) ‘The State Density for Second Order Ordinary, Differential Equations with White Gaussian Noise Potential’,Bollettino UMI 2-B, 283–296.Google Scholar
  90. Varadhan, S. R. S. (1983) ‘Large Deviations and Applications’, CBMS-NSF Reg. Conf. Ser. in Appl. Math.Google Scholar
  91. Virtser, A. D. (1983) ‘On the Simplicity of the Spectrum of the Ljapunov Characteristic Indices of a Product of Random Matrices’,Theor. Prob. Appli. 28, 122–135.MathSciNetGoogle Scholar
  92. Wegner, F. (1981) ‘Bounds on the Density of States in Disordered System’,Z. Phys. B. Condensed Matter 44, 9–15.CrossRefMathSciNetGoogle Scholar
  93. Yoshioka, Y. (1973) ‘On the Singularity of the Spectral Measures of a Semi-Infinite Random System’,Proc. Japan Acad. 49, 665–668.MATHMathSciNetGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • René Carmona
    • 1
  1. 1.Department of MathematicsUniversity of California at IrvineIrvineU.S.A.

Personalised recommendations