Computer methods for sampling from gamma, beta, poisson and bionomial distributions

Computermethoden zur Erzeugung Gamma-, Beta-, Poisson- und Binomialverteilter Zufallszahlen

Abstract

Accurate computer methods are evaluated which transform uniformly distributed random numbers into quantities that follow gamma, beta, Poisson, binomial and negative-binomial distributions. All algorithms are designed for variable parameters. The known convenient methods are slow when the parameters are large. Therefore new procedures are introduced which can cope efficiently with parameters of all sizes. Some algorithms require sampling from the normal distribution as an intermediate step. In the reported computer experiments the normal deviates were obtained from a recent method which is also described.

Zusammenfassung

Zur Erzeugung nicht-gleichverteilter Zufallszahlen braucht man Methoden, die gleichverteilte Zufallszahlen in Größen der gegebenen Verteilung transformieren. Es werden Transformationen untersucht, die Gamma-, Beta-, Poisson- oder Binomial-verteilte Zufallszahlen produzieren. Approximative Verfahren werden nicht behandelt. Die bisher bekannten Algorithmen sind langsam, wenn die Parameter der Verteilungen groß sind. Daher werden neue Methoden eingeführt, die diesen Nachteil weitgehend vermeiden. In allen Verfahren dürfen die Parameter beliebig und jedesmal neu gewählt werden. Für manche Transformationen werden normalverteilte Zufallszahlen als Zwischenschritt benötigt; die hierfür verwendete Methode ist ebenfalls angegeben.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Ahrens, J. H., and U. Dieter: Computer methods for sampling from the exponential and normal distributions. Comm. ACM15, 873–882 (1972).

    Article  MathSciNet  Google Scholar 

  2. [2]

    Ahrens, J. H., and U. Dieter: Extensions of Forsythe's method for random sampling from the normal distribution. Math. Comput.27, 927–937 (1973).

    MathSciNet  Google Scholar 

  3. [3]

    Ahrens, J. H., U. Dieter, and A. Grube: Pseudo-random numbers: A new proposal for the choice of multiplicators. Computing6, 121–138 (1970).

    Article  MathSciNet  Google Scholar 

  4. [4]

    Bankövi, G.: A note on the generation of beta-distributed and gamma-distributed random variables. Publ. Math. Inst. Hung. Acad. Scie.9, 555–563 (1964).

    MATH  Google Scholar 

  5. [5]

    Békéssy, A.: Remarks on beta-distributed random numbers. Publ. Math. Inst. Hung. Acad. Scie.9, 565–571 (1964).

    MATH  Google Scholar 

  6. [6]

    Dieter, U.: Autokorrelation multiplikativ-erzeugter Pseudo-Zufallszahlen. Operations Res. Verfahren6, 69–85 (1969).

    MATH  Google Scholar 

  7. [7]

    Dieter, U.: Pseudo-random numbers: The exact distribution of pairs. Math. Comput.25, 855–883 (1971).

    MATH  MathSciNet  Google Scholar 

  8. [8]

    Dieter, U.: Pseudo-random numbers: Permutations of triplets. J. Res. Nat. Bureau Standards (to appear).

  9. [9]

    Dieter, U., and J. H. Ahrens: An exact determination of serial correlations of pseudo-random numbers. Numer. Math.17, 101–123 (1971).

    Article  MathSciNet  Google Scholar 

  10. [10]

    Dieter, U., and J. H. Ahrens: A combinational method for the generation of normally distributed random numbers. Computing11, 137–146 (1973).

    Article  MathSciNet  Google Scholar 

  11. [11]

    Dieter, U., and J. H. Ahrens: Pseudo-random numbers. Preliminary version in preprint, 1972. (340 pages).

  12. [12]

    Fisz, M.: Probability Theory and Mathematical Statistics. New York: J. Wiley. 1962.

    Google Scholar 

  13. [13]

    Forsythe, G. E.: Von Neumann's comparison method for random sampling from the normal and other distributions. Math. Comput.26, 817–826 (1972).

    MATH  MathSciNet  Google Scholar 

  14. [14]

    Jöhnk, M. D.: Erzeugen von betaverteilten und gammaverteilten Zufallszahlen. Metrika8, 5–15 (1964).

    MATH  MathSciNet  Google Scholar 

  15. [15]

    Jöhnk, M. D.: Erzeugen und Tasten von Zufallszahlen. (Berichte aus dem Institut für Statistik und aus dem Institut für Angewandte Statistik der FU Berlin, Heft 6.) Würzburg: Physica-Verlag. 1969.

    Google Scholar 

  16. [16]

    Knuth, D. E.: The art of computer programming, Vol. II: Seminumerical algorithms. Reading, Mass.: Addison Wesley. 1969.

    Google Scholar 

  17. [17]

    Léger, R.: On sampling from the negative binomial and Weibull distributions. Master's thesis, Dalhousie University, Halifax, N.S., 1973.

    Google Scholar 

  18. [18]

    MacLaren, M. D., G. Marsaglia, and T. A. Bray: A fast procedure for generating normal random variables. Comm. ACM7, 4–10 (1964).

    Article  Google Scholar 

  19. [19]

    Marsaglia, G.: Expressing a random variable in terms of uniform random variables. Ann. Math. Stat.32, 894–899 (1961).

    MATH  MathSciNet  Google Scholar 

  20. [20]

    Marsaglia, G.: Random variables and computers. Trans. Third Prague Conf. Information Theory, Statistics and Decision Functions. Prague 1964, 499–512.

  21. [21]

    Payne, W. H., and T. G. Lewis: Conditional bit sampling: Accuracy and speed. Math. Software (Rice, J. R., ed.). Academic Press. 1971.

  22. [22]

    Relles, D. A.: A simple algorithm for generating binomial random variables whenN is large. J. Am. Stat. Ass.67, 612–613 (1972).

    MATH  Google Scholar 

  23. [23]

    von Neumann, J.: Various techniques in connection with random digits. Monte Carlo Methods. Nat. Bureau Standards, AMS12, 36–38 (1951).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

This research was supported by the National Research Council of Canada and by Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahrens, J.H., Dieter, U. Computer methods for sampling from gamma, beta, poisson and bionomial distributions. Computing 12, 223–246 (1974). https://doi.org/10.1007/BF02293108

Download citation

Key words and phrases

  • Random numbers
  • pseudorandom
  • normal distribution
  • gamma distribution
  • bei distribution
  • Poisson distribution
  • binomial distribution
  • simulation
  • numerical analysis