, Volume 43, Issue 9–10, pp 507–512 | Cite as

Urine clean-up method for determination of six arsenic species by LC-AAS involving microwave assisted oxidation and hydride generation

  • M. López-Gonzálvez
  • M. M. Gómez
  • M. A. Palacios
  • C. Cámara


An effective clean-up method based on the precipitation of most high molecular mass inorganic salts and organic compounds in ethanol at −15°C has been developed for the determination of arsenite, arsenate, monomethylarsonate (MMA), dimethylarsinate (DMA), arsenobetaine (AsB) and arsenocholine (AsC) in urine. Analyte recovery was close to 100%. The six species were separated on an anionic HPLC column and determined by microwave-assisted oxidation-hydride generation-atomic absorption spectrometry. The detection limits and relative standard deviation of the whole procedure were within the 8–15 μg L−1 and 2.5–5.3% ranges, respectively, which allows application to the analysis of urine of people exposed to arsenic.

Key Words

Column liquid chromatography Urine clean-up Arsenic speciation Microwave assisted oxidation Atomic absorption spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    X. Ch. Le, W. R. Cullen, K. J. Reimer, Talanta40, 185 (1993).Google Scholar
  2. [2]
    V. Foa, A. Colombi, M. Maroni, M. Buratti, in “Biological Indicators for The Assessment of Human Exposure to Industrial Chemicals”, L. Alessio, A. Berlin, H. Bori, R. Roi, eds., CEC, ISPRA, 1987, p. 25.Google Scholar
  3. [3]
    W. Maher, E. Butler, Appl. Organomet. Chem2, 191 (1988).Google Scholar
  4. [4]
    Y. Shibata and M. Morita, Anal. Sciences5, 107 (1989).Google Scholar
  5. [5]
    A. Shinagawa, K. Shiomi, H. Yamanaka, T. Kikuchi, Bull. Jpn. Soc. Sci. Fish49 (1983).Google Scholar
  6. [6]
    E. Mofarante, M. Vahter, “Proc. Int. Conf. Heavy Metals in the Environment”, J. P. Vernet, ed., Geneva, 1989, p. 162.Google Scholar
  7. [7]
    J. P. Buchet, R. Lauwergs, H. Roels, Int. Arch. Occup. Environ. Health46, 11 (1980).Google Scholar
  8. [8]
    E. Hakala, L. Pyy, J. Anal. At. Spectrom7, 191 (1992).Google Scholar
  9. [9]
    B. S. Chanas, N. J. Smith, Anal. Chim. Acta197, 177 (1987).Google Scholar
  10. [10]
    B. S. Sheppard, W. L. Shen, J. A. Caruso, D. T. Heitkemper, F. L. Fricke, J. Anal. Chim. Acta5, 431 (1990).Google Scholar
  11. [11]
    E. H. Larsen, G. Pritzl, S. H. Hansen, J. Anal. At. Spectrom8, 557 (1993).Google Scholar
  12. [12]
    J. Labardie, W. A. Dunn, N. N. Arouson, Biochem. J.160, 85 (1976).Google Scholar
  13. [13]
    R. J. Kraus, S. J. Foster, H. E. Gauther, Anal. Biochemistry147, 432 (1985).Google Scholar
  14. [14]
    M. A. López-Gonzálvez, M. M. Gómez, C. Cámara, M. A. Palacios, Fresenius J. Anal. Chem.346, 643 (1993).Google Scholar
  15. [15]
    M. A. López-Gonzálvez, M. M. Gómez, C. Cámara, M. A. Palacios, J. Anal. At. Spectrom9, 291 (1994).Google Scholar
  16. [16]
    G. L. Long, J. D. Winefordner, Anal. Chem.55 (7), 713A (1983).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1996

Authors and Affiliations

  • M. López-Gonzálvez
    • 1
  • M. M. Gómez
    • 1
  • M. A. Palacios
    • 1
  • C. Cámara
    • 1
  1. 1.Departamento de Química Analítica, Facultad de QuímicaUniversidad Complutense de MadridMadridSpain

Personalised recommendations