Chemistry of Natural Compounds

, Volume 33, Issue 2, pp 113–126 | Cite as

Current state of the study of microbial lipases

  • K. Davranov
  • V. B. Khalameizer
Article

Abstract

This review gives a comparative analysis of information accumulated over the past 15 years on the isolation, purification, properties, and use of lipases of microbial origin.

Keywords

Organic Chemistry Lipase Comparative Analysis Microbial Origin Microbial Lipase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. F. Fox, J. Soc. Dairy Technol.,33, 118 (1980).Google Scholar
  2. 2.
    H. Brockerhoff, Biochem. Biophys. Acta,159, 296 (1968).Google Scholar
  3. 3.
    A. M. Bezborodov, The Biotechnology of the Products of Microbial Synthesis [in Russian], Agropromizdat, Moscow (1991), p. 238.Google Scholar
  4. 4.
    A. M. Bezborodov, The Biochemical Principles of Microbial Synthesis [in Russian], Legkaya i Pishchevaya Prom-st', Moscow (1984), p. 304.Google Scholar
  5. 5.
    F. Priest, in: Extracellular Enzymes of Microorganisms. J. Chaloupka and V. Krumphanzi (eds.), Plenum, New York (1987).Google Scholar
  6. 6.
    M. Ya. Tabak, Influence of the Conditions of Cultivation on the Biosynthesis of anOospora lactis Lipase [in Russian], Dissertation ... Candidate of Biological Sciences, Tashkent (1979). p. 156.Google Scholar
  7. 7.
    T. R. Zubenko, The Biosynthesis of a Lipase by the FungusRhizopus microsporus [in Russian], Dissertation ... Candidate of Biological Sciences, Tashkent (1980), p. 122.Google Scholar
  8. 8.
    R. G. Jensen, Lipids,9, No. 3, 149 (1974).Google Scholar
  9. 9.
    A. Zaks and A. M. Klibanov, Science,224, 1249 (1984).Google Scholar
  10. 10.
    F. Ergan and M. Trani, Biotechnol. Lett.,13, No. 1, 151 (1988).Google Scholar
  11. 11.
    K. D. Davranov, G. I. Meerov, A. M. Bezborodov, et al., Prikl. Biokhim. Mikropbiol.,21, No. 2, 199 (1985).Google Scholar
  12. 12.
    H. S. Bevinakaytii and A. A. Banerji, Biotechnol. Lett.,10, No. 6, 397 (1988).Google Scholar
  13. 13.
    A. R. Macrae, G. Ratledge, P. Dawson, and J. Rattray, Biotechnology for the Oils and Fats Industry, Amerivan Oil Chemists' Society, Champaign, Vol. 3 (1985), p. 189.Google Scholar
  14. 14.
    Y. Tsujisaka, S. Okumura, and M. Iwai, Biochim. Biophys. Acta,489, 415 (1977).Google Scholar
  15. 15.
    R. Shuch and K. D. Mukherjee, J. Agric. Food Chem.,37, 1005 (1987).Google Scholar
  16. 16.
    R. A. Windom, P. Dunnill, and M. D. Lilly, Enzyme Microb., Technol.,6, 443 (1984).Google Scholar
  17. 17.
    J. M. Muderhwa, M. Pina, and J. Graille, Oléagineux,10, 385 (1988).Google Scholar
  18. 18.
    H. L. Goderis, G. Ampe, and M. P. Feyten, Biochnol. Bioeng.,30, 253 (1987).Google Scholar
  19. 19.
    K. D. Mukherjee and J. Kiewitt, J. Agric. Food Chem.,37, 529 (1987).Google Scholar
  20. 20.
    K. Yokezeki, S. Yamanaka, and E. Takinami, Eur. J. Appl. Microbiol. Biotechnol.,14, 1 (1992).Google Scholar
  21. 21.
    A. Kilara, Proc. Biochem.,20, 35 (1985).Google Scholar
  22. 22.
    R. G. Jensen, Lipolytic Enzymes. Progr. Chem. Fats Other Lipids,11, 347 (1971).Google Scholar
  23. 23.
    E. Charton, Doctoral Degree Report, Paris-Grignon (1991), p. 9.Google Scholar
  24. 24.
    T. Tzumi and S. Aratani, J. Chem. Technol. Biotechnol.,57, 33 (1993).Google Scholar
  25. 25.
    T. Tzumi and S. Murakami, J. Chem. Technol. Biotechnol.,60, 23 (1994).Google Scholar
  26. 26.
    C. Ransac, E. Rogalska, Y. Gargouri, A. M. T. J. Deveer, F. Paltauf, G. H. De Haas, and R. Verger, J. Biol. Chem.,265, No. 33, 20,263 (1990).Google Scholar
  27. 27.
    E. Rogalska, C. Ransac, and R. Verger, J. Biol. Chem.,265, No. 33, 20271 (1990).Google Scholar
  28. 28.
    U. Chander, B. Ranganathan, and M. Singh, J. Food Sci.,44, 1566 (1979).Google Scholar
  29. 29.
    I. M. Khan, C. W. Dill, and R. C. Chandan, Biochem. Biophys. Acta,132, 68 (1967).Google Scholar
  30. 30.
    M. Simonen and I. Palva, Microbiol. Rev.,57, 109 (1993).Google Scholar
  31. 31.
    A. Mates and D. Sudakevits, J. Appl. Bacteriol.,36, 219 (1973).Google Scholar
  32. 32.
    U. K. Winkler and M. Stuchmann, J. Bacteriol.,138, 663 (1979).Google Scholar
  33. 33.
    K.-E. Jaeger and U. K. Winkler, J. Bacteriol.,139, 1065 (1989).Google Scholar
  34. 34.
    I. Okhuro, T. Komatsuzaki, M. Kawashima, and S. Kuriyama, Med. Biol.,97, 171 (1978).Google Scholar
  35. 35.
    R. C. McKellar, K. Shamsuzzama, C. San Jose and H. Cholette, Arch. Microbiol.,147, 225 (1987).Google Scholar
  36. 36.
    L. Fernandez, C. San Jose, H. Cholette, and R. C. McKellar, Arch. Microbiol.,150, 523 (1988).Google Scholar
  37. 37.
    J. J. Goodman, Science,112, 176 (1950).Google Scholar
  38. 38.
    Y. Tsujisaka, M. Iwai, J. Fukumoto, and A. Okamoto, Agric. Biol. Chem.,37, 837 (1973).Google Scholar
  39. 39.
    J. A. Alford and J. L. Smith, J. Am. Oil Chem. Soc.,42, 1038 (1965).Google Scholar
  40. 40.
    A. Atkinson, Proc. Biochem., August 9 (1973).Google Scholar
  41. 41.
    A. Atkinson, Biochem. J.,127, 63 (1972).Google Scholar
  42. 42.
    K. D. Davranov, Lipases of the FungiOospora lactis andRhizopus microsporus [in Russian], Author's Abstract of Dissertation ... Doctor of Chemical Sciences [in Russian], Tashkent (1984), p. 7.Google Scholar
  43. 43.
    R. Akhmedzhanov, M. M. Rakhimov, and B. A. Tashmukhamedov, Uzb. Biol. Zh., No. 2, 3 (1979).Google Scholar
  44. 44.
    Zh. Kh. Dierov, K. D. Davranov, M. É. Zakirov, and A. A. B. Paulyukonis, USSR Inventor's Certificate 877,933 (19) [sic].Google Scholar
  45. 45.
    E. J. Gilbert, A. Cornish, and C. W. Jones, J. Gen. Microbiol.,137, 2223 (1991).Google Scholar
  46. 46.
    K. A. Brune and E. Gotz, in: Microbial Degradation of Natural Products, G. Winkelmann (ed.), VCH, Weinheim (1992), p. 243.Google Scholar
  47. 47.
    K.-E. Jaeger, F. J. Adrian, H. E. Meyer, R. E. W. Hancock, and U. K. Winkler, Biochem. Biophys. Acta,1120, 315 (1992).Google Scholar
  48. 48.
    B. Kh. Rozmukhamedova, Lipases of the FungiMucor miehei andPenicillium sp: Isolation, Purification, Characterization [in Russian], Dissertation ... Candidate of Biological Sciences Tashkent (1995), p. 86.Google Scholar
  49. 49.
    B. Borgstrom and R. L. Ory, Biochem. Biophys. Acta,212, 521 (1970).Google Scholar
  50. 50.
    J. Caplan, Work Term III Report, NRC of Canada, Biotechnology Research Institute, Montreal (1994), p. 3.Google Scholar
  51. 51.
    M. Cygler, J. Schrag, et al., Protein Sci.,2, 366 (1993).Google Scholar
  52. 52.
    M. Fukumoto, M. Iwai, and Y. Tsujisaka, J. Gen. Appl. Microbiol.,9, 353 (1993).Google Scholar
  53. 53.
    S. M. Franken, H. J. Rozeboom, K. H. Kalk, and B. Dijkstra, EMBO J.,10, 1297 (1991).Google Scholar
  54. 54.
    K. Isobe, T. Akiba, and S. Yamaguchi, Agric. Biol. Chem.,52, 41 (1988).Google Scholar
  55. 55.
    K. Isobe, K. Nokihara, S. Yamaguchi, T. Mase, and R. D. Schmid, Eur. J. Biochem.,203, 233 (1992).Google Scholar
  56. 56.
    L. Brady, A. M. Brzozowski, Z. Derewenda, E. Dodson, G. Dodson, S. Tolley, J. P. Turkenburg, L. Christiansen, and J. Huge, Nature (London),343, 767 (1990).Google Scholar
  57. 57.
    F. K. Winkler, A. D'Arcy, and W. Hunziker, Nature (London),343, 771 (1990).Google Scholar
  58. 58.
    J. D. Schrag, Y. Li, S. Wu, and M. Cygler, Nature (London),351, 761 (1991).Google Scholar
  59. 59.
    R. Sarma, J. Daubman, A. J. Poulose, J. Bieten, and S. Power, in: Lipases: Structure Mechanism and Genetic Engineering, GBF, Monographs, Germany,16, 71 (1990).Google Scholar
  60. 60.
    C. L. Soliday and P. E. Kolattukudy, Biochem. Biophys. Res. Commun.,114, 1017 (1983).Google Scholar
  61. 61.
    M. Cygler, J. D. Schrag, and F. Ergan, Biotechnol. Genet. Rev. (1993).Google Scholar
  62. 62.
    H. C. Hedrich, F. Spener, U. Menge, H. Hecht, and R. D. Schmidt, Enzyme Microb. Technol.,13, 840 (1991).Google Scholar
  63. 63.
    L. Swenson, R. Green, R. Joerger, M. Haas, K. Scott, Y. Wei, U. Derewenda, D. M. Lawson, and Z. S. Derewenda, Protein: Structure, Function, Genetics,18, 301 (1994).Google Scholar
  64. 64.
    M. Holmquist, M. Norin, and K. Hult, Lipids,28, No. 8, 721 (1993).Google Scholar
  65. 65.
    M. Holmquist, M. Martinelle, I. G. Clausen, S. Patkar, A. Svendsen, and K. Hult Lipids,29, No. 9, 599 (1994).Google Scholar
  66. 66.
    D. L. Robertson, S. Hilton, K. R. Wong, A. Koephe, and J. T. Buckley, J. Biol. Chem.,269, No. 3, 2146 (1994).Google Scholar
  67. 67.
    J. D. Schrag, S. Wu, Y. Li, and M. Cygler, J. Mol. Biol.,220, 541 (1991).Google Scholar
  68. 68.
    D. L. Ollis, E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S. M. Franken, and M. Harel, Protein Eng.,5, 67 (1992).Google Scholar
  69. 69.
    P. Grochulski, Y. Li, J. D. Schrag, F. Bouthillier, P. Smith, D. Harison, B. Rubin, and M. Cygler, J. Biol. Chem.,268, No. 17, 12,843 (1993).Google Scholar
  70. 70.
    B. Rubin, Struct. Biol.,1, No. 9, 568 (1973).Google Scholar
  71. 71.
    H. L. Brockman, J. H. Law, and F. J. Keady, J. Biol. Chem.,248, 4965 (1973).Google Scholar
  72. 72.
    C. Chapus, M. Semeriva, C. Bovier-Lapierre, and P. Desnuelle, Biochemistry,15, 4980 (1976).Google Scholar
  73. 73.
    S. Jager, G. Demelither, and F. Gotz, FEMS Microbiol. Lett.,100, 249 (1992).Google Scholar
  74. 74.
    M. Cygler, J. D. Schrag, J. L. Sussman, M. Harel, K. Silman, B. P. Doctor, and M. H. Genry (1994), in preparation.Google Scholar
  75. 75.
    Z. S. Derewenda and U. Derewenda, Biochem. Cell. Biol.,69, 842 (1991).Google Scholar
  76. 76.
    D. J. Stead, Dairy Res.,53, 481 (1986).Google Scholar
  77. 77.
    M. M. Hoq, H. Tagami, T. Yamane, and S. Shimizu, Agric. Biol. Chem.,49, 335 (1985).Google Scholar
  78. 78.
    G. P. McNeill and T. Yamane, J. Am. Oil Chem. Soc.,68, 6 (1991).Google Scholar
  79. 79.
    A. R. Macrae and R. C. Hammond, Biotechnol. Genet. Eng. Rev.,3, No. 6, 193 (1985).Google Scholar
  80. 80.
    G. Bell, J. A. Blain, J. D. E. Paterson, C. E. L. Shaw, and R. Todd, FEMS Microbiol Lett.,3, 223 (1978).Google Scholar
  81. 81.
    A. E. M. Jansen, A. V. Padt, H. M. Van Sonsbeek, and K. Van't Riet, Biotechnol. Bioeng.,41, 95, (1993).Google Scholar
  82. 82.
    Y. Dudal and R. Lortie, Biotechnol. Bioeng.,45, 129 (1995).Google Scholar
  83. 83.
    S.-W. Cho and J. S. Rhee, Biotechnol. Bioeng.,42, 204 (1993).Google Scholar
  84. 84.
    B. H. Junker, M. Bhupathy, and B. S. Buchland, Biotechnol. Bioeng.,42, 487 (1993).Google Scholar
  85. 85.
    M. Sugiura and T. Oikawa, Biochem. Biophys. Acta,489, 262 (1977);488, 353 (1977).Google Scholar
  86. 86.
    N. A. Bashkatova, Author's Abstract of Candidate's Dissertation [in Russian], Moscow (1980).Google Scholar
  87. 87.
    Microbial Enzymes and Biotechnology [in Russian], Moscow (1986).Google Scholar
  88. 88.
    N. Tomizuka, Y. Ota, and K. Yamada, Agric. Biol. Chem.,30, 576 and 1090 (1966).Google Scholar
  89. 89.
    Y. Tsujisaka, M. Iwai, and Y. Tominaga, Agric. Biol. Chem.,37, 1457 (1973).Google Scholar
  90. 90.
    W.-H. Lui, T. Beppu, and K. Arima, Agric. Biol. Chem.,37, 157 and 1349 (1973).Google Scholar
  91. 91.
    H. Ishihara, H. Okuyama, H. Ikosawa, and S. Tejima, Biochem. Biophys. Acta,388, 413 (1975).Google Scholar
  92. 92.
    M. Semeriva, G. Benzonana, and P. Desnuelle, Biochem. Biophys. Acta,388, 413 (1975).Google Scholar
  93. 93.
    M. Iwai, Y. Tsujisaka, Y. Okamoto, and J. Fukumoto, Biochem. Biophys. Acta,37, 929 (1973).Google Scholar
  94. 94.
    A. I. Marchenkova, Author's Abstract of Candidate's Dissertation [in Russian], Moscow (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • K. Davranov
  • V. B. Khalameizer

There are no affiliations available

Personalised recommendations