, Volume 37, Issue 1, pp 61–91 | Cite as

Some new results on factor indeterminacy

  • Peter H. Schönemann
  • Ming-Mei Wang


Some relations between maximum likelihood factor analysis and factor indeterminacy are discussed. Bounds are derived for the minimum average correlation between equivalent sets of correlated factors which depend on the latent roots of the factor intercorrelation matrix ψ. Empirical examples are presented to illustrate some of the theory and indicate the extent to which it can be expected to be relevant in practice.


Public Policy Statistical Theory Latent Root Correlate Factor Average Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. W.An introduction to multivariate statistical analysis. New York: Wiley, 1958.Google Scholar
  2. Anderson, T. W., & Rubin, H. Statistical inference in factor analysis. In J. Neyman (Ed.),Proceedings of third Berkeley symposium on mathematical statistics and probability, Berkeley: Univer. California Press, 1956,5, 111–150.Google Scholar
  3. Bargmann, R. A study of independence and dependence in multivariate normal analysis. University of North Carolina, Institute of Statistics Mimeo Series No. 186, 1957.Google Scholar
  4. Bechtoldt, H. P. An empirical study of the factor analysis stability hypothesis.Psychometrika, 1961,26, 405–432.Google Scholar
  5. Bellman, R.Introduction to matrix analysis. New York: McGraw-Hill, 1960.Google Scholar
  6. Browne, Michael, W. A comparison of factor analytic techniques.Psychometrika, 1968,33, 267–334.Google Scholar
  7. Browne, Michael W. Fitting the factor analysis model.Psychometrika, 1969,34, 375–394.Google Scholar
  8. Camp, B. H. The converse of Spearman's two-factor theorem.Biometrika, 1932,24, 418–427.Google Scholar
  9. Davis, F. B. Fundamental factors of comprehension in reading.Psychometrika, 1944,9, 185–197.Google Scholar
  10. Emmett, W. G. Factor analysis by Lawley's method of maximum likelihood.British Journal of Psychology, Statistical Section, 1949,2, 90–97.Google Scholar
  11. Guttman, L. The determinacy of factor score matrices with implications for five other basic problems of common-factor theory.British Journal of Statistical Psychology, 1955,8, 65–81.Google Scholar
  12. Guttman, L. Image theory for the structure of quantitative variates.Psychometrika, 1953,18, 277–296.Google Scholar
  13. Harman, H. H.Modern factor analysis. Chicago: University of Chicago Press, 1960.Google Scholar
  14. Harman, H. H.Modern factor analysis. Second Edition (Revised). Chicago: University of Chicago Press, 1967.Google Scholar
  15. Harris, C. W. On factors and factor scores.Psychometrika, 1967,32, 363–379,Google Scholar
  16. Harris, C. W. Some Rao-Guttman relationships.Psychometrika, 1962,27, 247–263.Google Scholar
  17. Heermann, E. F. The geometry of factorial indeterminacy.Psychometrika, 1964,29, 371–381.Google Scholar
  18. Heermann, E. F. The algebra of factorial indeterminacy.Psychometrika, 1966,31, 539–543.Google Scholar
  19. Hendrickson, A. E., and White, P. O. PROMAX: A quick method for rotation to oblique simple structure.British Journal of Statistical Psychology, 1964,17, 65–70.Google Scholar
  20. Horst, Paul. Generalized Factor Analysis. Part I. Technical Report. Seattle, Washington, 1969.Google Scholar
  21. Householder, A. S.Theory of matrices in numerical analysis. New York: Ginn, 1963.Google Scholar
  22. Howe, W. G. Some contributions to factor analysis. Report No. ORNL-1919, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1955.Google Scholar
  23. Jöreskog, K. G. Some contributions to maximum likelihood factor analysis.Psychometrika, 1967,32, 443–482.Google Scholar
  24. Jöreskog, K. G.Statistical estimation in factor analysis. Stockholm: Almqvist & Wiksell, 1963.Google Scholar
  25. Kaiser, H. F. Image analysis. In: Harris, C. W. (Ed.),Problems in measuring change. University of Wisconsin Press, 1963.Google Scholar
  26. Kestelman, H. The fundamental equation of factor analysis.British Journal of Psychology, Statistical Section, 1952,5, 1–6.Google Scholar
  27. Lawley, D. N. The estimation of factor loadings by the method of maximum likelihood.Proceedings of the Royal Society of Edinburgh, Section A, 1940,60, 64–82.Google Scholar
  28. Lawley, D. N. Further investigations in factor estimation.Proceedings of the Royal Society of Edinburgh, Section A, 1942,61, 176–185.Google Scholar
  29. Lawley, D. N. The application of the maximum likelihood method to factor analysis.British Journal of Psychology, 1943,33, 172–175.Google Scholar
  30. Lawley, D. N., and Maxwell, A. E.Factor analysis as a statistical method. London: Butterworths, 1963.Google Scholar
  31. Ledermann, W. The orthogonal transformation of a factorial matrix into itself.Psychometrika, 1938,3, 181–187.Google Scholar
  32. Lord, F. M. A study of speed factors in tests and academic grades.Psychometrika, 1956,21, 31–50.Google Scholar
  33. Maxwell, E. A. Recent trends in factor analysis.Journal of the Royal Statistical Society, Series A, 1961,124, 49–59.Google Scholar
  34. McDonald, R. P., and Burr, E. J. A comparison of four methods of construction factor scores.Psychometrika, 1967,32, 381–401.Google Scholar
  35. Pawlik, K.Dimensionen des verhaltens. Bern: H. Huber, 1968.Google Scholar
  36. Piaggio, H. T. H. Three sets of conditions necessary for the existence of ag that is real and unique except in sign.British Journal of Psychology, 1933,24, 88–105.Google Scholar
  37. Rao, C. R. Estimation and tests of significance in factor analysis.Psychometrika, 1955,20, 93–111.Google Scholar
  38. Schönemann, Peter H. The minimum average correlation between equivalent sets of uncorrelated factors.Psychometrika, 1971,36, 21–30.Google Scholar
  39. Thomson, G. H. The definition and measurement of “g” (general intelligence).Journal of Educational Psychology, 1935,26, 241–262.Google Scholar
  40. Thurstone, L. L. The dimensions of temperament.Psychometrika, 1951,16, 11–20.Google Scholar
  41. Wilson, E. B. On hierarchical correlation systems.Proceedings, National Academy of Science, 1928,14, 283–291.Google Scholar

Copyright information

© Psychometric Society 1972

Authors and Affiliations

  • Peter H. Schönemann
    • 1
  • Ming-Mei Wang
    • 1
  1. 1.Purdue UniversityUSA

Personalised recommendations