Chemistry of Heterocyclic Compounds

, Volume 34, Issue 5, pp 533–537 | Cite as

Quantum chemical investigation by the AM1 method of the catalytic cyclodehydration of 1,4-butanediol

  • M. Fleisher
  • L. Leite
  • A. Lebedev
  • E. Lukevics


1,4-Butanediol is converted into tetrahydrofuran in the presence of silica gel at temperatures of 245–340°C. The mechanism of the conversion of 1,4-butanediol has been studied by the quantum chemical AM1 method with full optimization of the geometry. It was established that two parallel reactions are possible depending on the conformation of the molecule. The cyclodehydration reaction is effected by conversion of a semicyclic conformer of the protonated diol molecule at a basic center of the catalyst by a concerted mechanism. The heat of the reaction forming tetrahydrofuran is —161.768 kcal/mole.


Organic Chemistry Diol Quantum Chemical Tetrahydrofuran Parallel Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. V. Shimanska (ed.), Contact Reactions of Furan Compounds [in Russian], Zinatne, Riga (1985).Google Scholar
  2. 2.
    S. Patai (ed.), The Chemistry of Ethers, Crown Ethers, Hydroxyl Groups and Their Sulphur Analogues. Supplement E2. Dehydration of Diols, Wiley, New York (1980), Chap. 16, p. 721.Google Scholar
  3. 3.
    M. Shymanska and E. Lukevics, Chem. Heterocycl. Compds.,29, 1000 (1993).Google Scholar
  4. 4.
    A. Molnar, K. Felföldi, and M. Bartok, Tetrahedron,37, 2149 (1981).Google Scholar
  5. 5.
    I. Bucsi, A. Molnar, M. Bartok, and G. A. Olah, Tetrahedron,51, 3319 (1995).Google Scholar
  6. 6.
    Y. V. Subba Rao, S. J. Kulkarni, M. Subrahmanyam, and A. V. Rama Rao, J. Org. Chem.,59, 3998 (1994).Google Scholar
  7. 7.
    B. Delmon and J. T. Yates (eds.), Studies in Surface Science and Catalysis. Heterogeneous Catalysis and Fine Chemicals IV, Vol. 108, p. 641 (1997).Google Scholar
  8. 8.
    N. D. Chuvylkin, G. M. Zhidomirov, and V. B. Kazanskii, Kinet. Katal.,14, No. 4, 943 (1973).Google Scholar
  9. 9.
    Rif. R. Shagidullin, A. V. Chernova, and R. R. Shagidullin, Izv. Akad. Nauk, Ser. Khim., No. 9, 1572 (1993).Google Scholar
  10. 10.
    S. R. Blaszkowski and R. A. Van Santen, J. Phys. Chem.,99, 11728 (1995).Google Scholar
  11. 11.
    F. H. Allen, O. Kennard, and D. G. Watson, J. Chem. Soc., Perkin Trans. 2, No. 12, p.S 1 (1987).Google Scholar
  12. 12.
    L. Kh. Freidlin and V. Z. Sharf, Izv. Akad. Nauk SSSR, Ser. Khim., No. 9 1700 (1960).Google Scholar
  13. 13.
    P. Stewart, Program package MOPAC (QCPE N 455). Version 5.0.Google Scholar
  14. 14.
    D. F. Shanno, J. Optimiz. Theory Appl.,46, 87 (1985).Google Scholar
  15. 15.
    LabVision (Version 1, 1992). TRIPOS Associates Inc., 1699 S. Hanley Rd., St. Louis, MO 63144, USA.Google Scholar
  16. 16.
    Yu. I. Gorlov, V. A. Zaets, and A. A. Chuiko, Teor. Éksp. Khim., No. 4, 407 (1988).Google Scholar
  17. 17.
    P. Ya. Gokhberg, V. A. Tolstonogov, I. P. Zakharov, and B. I. No., Kinet. Katal.,30, No. 2, 334 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • M. Fleisher
  • L. Leite
  • A. Lebedev
  • E. Lukevics

There are no affiliations available

Personalised recommendations