Chromatographia

, Volume 31, Issue 1–2, pp 50–54 | Cite as

Separation and quantitation of nicergoline and related substances by high-performance liquid chromatography/atmospheric pressure ionization mass spectrometry

  • K. Banno
  • S. Horimoto
Originals

Summary

This study demonstrated the utility of high-performance liquid chromatography/atmospheric pressure ionization mass spectrometry (HPLC/API-MS) in the investigation of 10α-methoxy-1,6-dimethylergoline-8β-methanol 5-bromonicotinic acid ester (Nicergoline) and its related substances. The analysis was performed by using an ODS column with ammonium acetate and methanol mixture as the mobile phase. Nicergoline and its related compounds could be characterized by HPLC/API-MS in terms of their molecular weight. The use of multiple ion detection techniques for the quantitation of these compounds was also investigated. The detection limits of nicergoline and its related substances were 5 to 10 ng each at a signal-to-noise ratio of 4. The method was also applied to the study of the decomposition products of nicergoline in simulated gastric and intestinal fluids.

Key Words

Column liquid chromatography/mass spectrometry Atmospheric pressure ionization Selective ion monitoring Nicergoline Semisynthetic alkaloids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. T. Mahin, R. T. Lofberg, Anal. Biochem.,16, 550 (1966).Google Scholar
  2. [2]
    G. Arcari, L. Dorigotti, G. B. Fregnan, A. Glasser, Br. J. Pharmac.,34, 700 (1968).Google Scholar
  3. [3]
    W. Barbieri, L. Dernardi, G. Bosisio, A. Temperilli, Tetrahedron,25, 2401 (1969).Google Scholar
  4. [4]
    F. Arcamone, A. G. Glasser, J. Grafnetterova, A. Minghetti, V. Nicolella, Biochem. Pharmacol.,21, 2205 (1972).Google Scholar
  5. [5]
    L. Bernardi, G. Bosisio, O. Goffredo, B. Patelli, Gazz. Chim. Ital.,95, 384 (1964).Google Scholar
  6. [6]
    M. Flieger, P. Sedmera, J. Vokoun, U. Rehacek, J. Stuchlik, A. Verny, J. Chromatogr.,284, 219 (1984).Google Scholar
  7. [7]
    W. H. Mcfadden, J. Chromatogr. Sci.,18, 97 (1980).Google Scholar
  8. [8]
    R. D. Smith, J. E. Burger, A. L. Johnson, Anal. Chem.,53, 1603 (1981).Google Scholar
  9. [9]
    C. Eckers, D. E. Games, David N. B. Mallen, B. P. Swann, Anal. Proc.,19, 133 (1982).Google Scholar
  10. [10]
    Y. Kushi, C. Rokukawa, Y. Numajiri, Y. Kato, S. Handa, Anal. Biochem.,182, 405 (1989).Google Scholar
  11. [11]
    R. K. Mitrchum, J. R. Althaus, W. A. Korfmacher, K. L. Rowland, K. Nam, J. F. Young, Biomedical Mass Spectrometry,8 (11), 539 (1981).Google Scholar
  12. [12]
    Andries P. Bruins, Lars O. G. Weidolf, J. D. Henion, W. L. Budde, Anal. Chem.,59, 2647 (1987).Google Scholar
  13. [13]
    L. Kolaitis, David M. Lubman, Anal. Chem.,58, 1993 (1986).Google Scholar
  14. [14]
    E. C. Horning, D. I. Caroll, K. D. Haegele, M. G. Horning, R. N. Stillwell, J. Chromatogr.,99, 13 (1974).Google Scholar
  15. [15]
    D. I. Carroll, I. Dzidic, R. N. Stillwell, K. D. Haegele, E. C. Horning, Anal. Chem.47, 2369 (1975).Google Scholar
  16. [16]
    H. Kambara, Anal. Chem.54, 143 (1982).Google Scholar
  17. [17]
    M. Sakairi, H. Kambara, Mass Spectrosc.,31, 87 (1983).Google Scholar
  18. [18]
    J. D. Henion, B. A. Thomson, P. H. Dawson, Anal. Chem.,54, 451 (1982).Google Scholar
  19. [19]
    T. R. Covey, D. L. Lee, J. D. Henion, Anal. Chem.,58, 2453 (1986).Google Scholar
  20. [20]
    T. R. Covey, E. D. Lee, A. P. Bruins, J. D. Henion, Anal. Chem.,58, 1451A (1986).Google Scholar
  21. [21]
    M. Sakairi, H. Kambara, Anal. Chem.,60 (8), 774 (1988).Google Scholar
  22. [22]
    K. Banno, M. Matsuoka, M. Matsuo, J. Kato, R. Shimizu, A. Kinumaki, Iyakuhin Kenkyu,20, (3), 621 (1989).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1991

Authors and Affiliations

  • K. Banno
    • 1
  • S. Horimoto
    • 1
  1. 1.Analytical Chemistry Research LaboratoryTanabe Seiyaku Co., Ltd.OsakaJapan

Personalised recommendations