Advertisement

Chromatographia

, Volume 34, Issue 1–2, pp 56–62 | Cite as

Combined Kalman filtering and steepest descent minimization for quantitative analysis of unresolved misaligned chromatographic peaks. The resolution of alternariol and altenuisol mycotoxins in mixtures by HPLC

  • T. Rotunno
Originals

Summary

The potential of a computational approach for the quantitative resolution of seriously overlapping chromatographic peaks when there is loss of collinearity between the pure component peaks and the mixture peak has been explored. The program makes iterative use of the Kalman filter algorithm for resolving the mixture peak with the component peaks aligned according to some values of the position parameters, and of a steepest descent minimization procedure to find the optimal alignment. This combined procedure has been applied to the quantitive resolution of the HPLC chromatograms of alternariol and altenuisol mycotoxins in synthetic mixtures and in real samples.

Key Words

Column liquid chromatography Kalman filter Deconvolution Mycotoxins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Palmisano, P. G. Zambonin, A. Visconti, A. Bottalico, Chromatographia27, 425 (1989).Google Scholar
  2. [2]
    F. Palmisano, P. G. Zambonin, A. Visconti, A. Bottalico, J. Chromatogr.465, 305 (1989).Google Scholar
  3. [3]
    R. G. Brown, in “Introduction to Random Signal Analysis and Kalman Filtering”, J. Wiley Ed. New York, 1983, pp. 181–212.Google Scholar
  4. [4]
    S. D. Brown, Anal. Chim. Acta181, 1 (1986).Google Scholar
  5. [5]
    S. C. Rutan, J. Chemiometrics1, 7 (1987).Google Scholar
  6. [6]
    S. C. Rutan, J. Chemiometrics4, 103 (1990).Google Scholar
  7. [7]
    W. A. Halang, R. Langlais, E. Kugler, Anal. Chem.50, 1829 (1978).Google Scholar
  8. [8]
    P. Gans, J. G. Gill, Appl. Spectrosc.38, 370 (1984).Google Scholar
  9. [9]
    T. Rorunno, F. Palmisano, G. Tiravanti, P. G. Zambonin, Chromatographia29, 269 (1990).Google Scholar
  10. [10]
    T. F. Brown, S. D. Brown, Anal. Chem.,53, 1410 (1981).Google Scholar
  11. [11]
    E. H. Van Veen, F. J. Oukes, M. T. C. de Loos-Vollebregt, Spectroch. Acta45B, 1109 (1990).Google Scholar
  12. [12]
    E. H. Van Veen, M. T. C. de Loos-Vollebregt, Anal. Chem.63, 1441 (1981).Google Scholar
  13. [13]
    S. C. Rutan, S. D. Brown, Anal. Chim. Acta160, 99 (1984).Google Scholar
  14. [14]
    S. C. Rutan, S. D. Brown, Anal. Chim. Acta167, 39 (1985).Google Scholar
  15. [15]
    S. C. Rutan, P. W. Carr, Anal. Chim. Acta215, 131 (1988).Google Scholar
  16. [16]
    D. D. Gerow, S. C. Rutan, Anal. Chim. Acta184, 53 (1986).Google Scholar
  17. [17]
    D. D. Gerow, S. C. Rutan, Anal. Chim. Acta60, 847 (1988).Google Scholar
  18. [18]
    H. R. Wilk, S. D. Brown, Anal. Chim. Acta225, 37 (1989).Google Scholar
  19. [19]
    T. L. Cecil, R. C. Rutan, Anal. Chem.62, 1998 (1990).Google Scholar
  20. [20]
    R. C. Rutan, Anal. Chem.63, 1103A (1991).Google Scholar
  21. [21]
    L. Meites, in “The General Multiparametric Curve-Fitting Program CFT4A.” privately published, 1983.Google Scholar
  22. [22]
    L. Meites, CRC Crit. Rev. Anal. Chem.8 (11), 1 (1979).Google Scholar
  23. [23]
    T. P. Kohman, J. Chem. Educ.47 (9), 657 (1970).Google Scholar
  24. [24]
    J. P. Foley, J. Chromatogr.384, 301 (1987).Google Scholar
  25. [25]
    S. D. Brown, S. D. Rutan, J. Res. Natl. Bur. Stand.90, 403 (1985).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1992

Authors and Affiliations

  • T. Rotunno
    • 1
  1. 1.Laboratorio di Chimica AnaliticaDipartimento di Chimica dell'UniversitàBariItaly

Personalised recommendations