Advertisement

Chromatographia

, Volume 34, Issue 1–2, pp 25–30 | Cite as

The separation of herbicides by micellar electrokinetic capillary chromatography

  • Q. Wu
  • H. A. Claessens
  • C. A. Cramers
Originals

Summary

A method for the separation of a number of herbicides consisting of chlorophenoxy acids by micellar electrokinetic capillary chromatography (MECC) was developed. Sodium dodecyl sulphate (SDS), Brij 35, cetyltrimethylammonium bromide (CTAB) and methanol were introduced into the buffers to investigate their effects on the separation of the herbicides. SDS combined with Brij 35 as the micellar agent was found to provide the best overall separation of these components.

Key Words

Electrokinetic capillary chromatography Micellar agents Chlorophenoxy acids Herbicides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. W. Bovey, A. Young, The Science of 2,4,5-T and Associated Phenoxy Herbicides, Wiley, New York, 1980, p. 301.Google Scholar
  2. [2]
    N. Gorde, M. Beroza, Anal. Chem.24, 1968 (1952).Google Scholar
  3. [3]
    S. Gottlieb, P. B. Marsh, Ind. Eng. Chem.18, 16 (1946).Google Scholar
  4. [4]
    A. Lechien, P. Valenta, H. W. Nürnberg, C. J. Patriache, Fresenius Z. Anal. Chem.306, 156 (1981).Google Scholar
  5. [5]
    W. H. Guterman, D. J. Lisk, J. Agric. Food Chem.11, 301 (1963).Google Scholar
  6. [6]
    S. F. Howard, G. Yip, J. Assoc. Off. Anal. Chem.54, 970 (1971).Google Scholar
  7. [7]
    S. U. Khan, J. Assoc. Off. Anal. Chem.58, 1027 (1975).Google Scholar
  8. [8]
    A. S. Y. Chau, K. Terry, J. Assoc. Off. Anal. Chem.59, 633 (1976).Google Scholar
  9. [9]
    H. Agemian, A. S. Y. Chau, J. Assoc. Off. Anal. Chem.60, 1070 (1977).Google Scholar
  10. [10]
    R. Bailey, G. LeBel, J. F. Lawrence, J. Chromatogr.161, 251 (1978).Google Scholar
  11. [11]
    J. J. Richards, J. S. Fritz, J. Chromatogr. Sci.18, 35 (1980).Google Scholar
  12. [12]
    M. L. Hopper, J. Agric. Food Chem.35, 265 (1982).Google Scholar
  13. [13]
    H. Roseboom, H. A. Herbold, C. J. Berkoff, J. Chromatogr.249, 323 (1982).Google Scholar
  14. [14]
    E. G. Cotterill, Analyst (London),107, 76 (1982).Google Scholar
  15. [15]
    F. I. Dauska, J. High Resolut. Chromatogr. & Chromatogr. Commun.7, 660 (1984).Google Scholar
  16. [16]
    B. Blessington, N. Crabb, S. Karkee, A. Northage, J. Chromatogr.469, 183 (1989).Google Scholar
  17. [17]
    T. Tsukioka, T. Murakami, J. Chromatogr.469, 351 (1989).Google Scholar
  18. [18]
    E. De Felip, A. Di Domenico, F. Volpi, J. Chromatogr.489, 404 (1989).Google Scholar
  19. [19]
    F. Eisenbeiss, H. Sieper, J. Chromatogr.83, 439 (1973).Google Scholar
  20. [20]
    J. F. Lawrence, D. Turton, J. Chromatogr.159, 207 (1978).Google Scholar
  21. [21]
    P. Cabras, P. Diana, M. Meloui, F. M. Pirisi, J. Chromatogr.234, 249 (1982).Google Scholar
  22. [22]
    P. Jandera, L. Suoboda, J. Kubát, J. Schvantner, J. Churácek, J. Chromatogr.292, 71 (1984).Google Scholar
  23. [23]
    J. A. Apffel, U. A. Th. Brinkman, R. W. Frei, J. Chromatogr.312, 153 (1984).Google Scholar
  24. [24]
    R. D. Voyksner, J. T. Bursey, E. D. Pellizari, J. Chromatogr.312, 221 (1984).Google Scholar
  25. [25]
    M. Åkerblom, J. Chromatogr.319, 427 (1985).Google Scholar
  26. [26]
    S. H. Hoke, E. E. Brueggeman, L. J. Baxter, T. Trybus, J. Chromatogr.357, 429 (1986).Google Scholar
  27. [27]
    B. Blessington, N. Crabb, J. Chromatogr.454, 450 (1988).Google Scholar
  28. [28]
    B. Blessington, N. Crabb, J. Chromatogr.483, 349 (1989).Google Scholar
  29. [29]
    N. P. Hill, A. E. MacIntyre, R. Perry, J. N. Lester, Intern. J. Environ. Anal. Chem.15, 107 (1983).Google Scholar
  30. [30]
    V. Lopez-Avila, P. Hirata, S. Kraska, J. H. Taylor, Jr., J. Agric. Food Chem.34, 530 (1986).Google Scholar
  31. [31]
    S. Mierzwa, S. Witek, J. Chromatogr.136, 105 (1977).Google Scholar
  32. [32]
    J. J. Richards, C. D. Chriswell, J. S. Fritz, J. Chromatogr.199, 143 (1980).Google Scholar
  33. [33]
    R. L. Smith, D. J. Pietrzyk, J. Chromatogr. Sci.21, 282 (1983).Google Scholar
  34. [34]
    M. J. Bertrand, A. W. Ahmed, B. Sarrasin, V. N. Mallet, Anal. Chem.59, 1302 (1987).Google Scholar
  35. [35]
    R. B. Geerdink, J. Chromatogr.445, 273 (1988).Google Scholar
  36. [36]
    R. B. Geerdink, C. A. A. van Balkom, H. J. Brouwer, J. Chromatogr.481, 275 (1989).Google Scholar
  37. [37]
    R. B. Geerdink, A. M. V. C. Graumans, J. Viveen, J. Chromatogr.547, 478 (1991).Google Scholar
  38. [38]
    G. Audunsson, Anal. Chem.58, 2714 (1986).Google Scholar
  39. [39]
    G. Audunsson, Anal. Chem.60, 1340 (1988).Google Scholar
  40. [40]
    G. Nilvé, G. Audunsson, J. Jönsson, J. Chromatogr.471, 151 (1989).Google Scholar
  41. [41]
    P. J. M. Hendriks, H. A. Claessens, Th. M. Noij, F. M. Everaerts, 15th International Symposium on Column Liquid Chromatography, Switzerland, June 3–7, 1991, p. 95/1.Google Scholar
  42. [42]
    W. G. Kuhr, E. S. Yeung, Anal. Chem.60, 1832 (1988).Google Scholar
  43. [43]
    T. Lee, E. S. Yeung, J. Chromatogr.565, 197 (1991).Google Scholar
  44. [44]
    K. Otsuka, S. Terabe, T. Ando, J. Chromatogr.332, 219 (1985).Google Scholar
  45. [45]
    P. D. Grossman, J. C. Colburn, H. H. Lauer, R. G. Nielson, R. M. Riggin, G. S. Sittampalam, E. C. Rickard, Anal. Chem.61, 1186 (1989).Google Scholar
  46. [46]
    B. L. Karger, A. S. Cohen, A. Guttman, J. Chromatogr.492, 585 (1989).Google Scholar
  47. [47]
    G. J. M. Bruin, J. P. Chang, R. H. Kuhlman, K. Zegers, J. C. Kraak, H. Poppe, J. Chromatogr.471, 429 (1989).Google Scholar
  48. [48]
    K. A. Cobb, B. Dolnik, M. Novotny, Anal. Chem.62, 2487 (1990).Google Scholar
  49. [49]
    C. P. Ong, C. L. Ng, N. C. Chong, H. K. Lee, S. F. Y. Li, J. Chroamtogr.516, 263 (1990).Google Scholar
  50. [50]
    S. Fujiwara, S. Iwasa, S. Honda, J. Chroamtogr.497, 133 (1988).Google Scholar
  51. [51]
    H. Nishi, N. Tsumagari, T. Kakimoto, S. Terabe, J. Chromatogr.465, 331 (1989).Google Scholar
  52. [52]
    C. P. Ong, C. L. Ng, H. B. Lee, S. F. Y. Li, J. Chromatogr.547, 419 (1991).Google Scholar
  53. [53]
    H. Nishi, S. Terabe, Electrophoresis11, 691 (1990).Google Scholar
  54. [54]
    W. Thormann, P. Meier, C. Marcolli, F. Binder, J. Chromatogr.545, 445 (1991).Google Scholar
  55. [55]
    P. G. Pietta, P. L. Mauri, A. Rava, G. Sabbatini, J. Chromatogr.549, 367 (1991).Google Scholar
  56. [56]
    S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, T. Ando, Anal. Chem.56, 111 (1984).Google Scholar
  57. [57]
    S. Terabe, K. Otsuka, T. Ando, Anal. Chem.57, 834 (1985).Google Scholar
  58. [58]
    R. J. Hunter, “Zeta Potential in Colloid Science”. Academic Press, London, 1981.Google Scholar
  59. [59]
    J. P. Foley, Anal. Chem.62, 1302 (1990).Google Scholar
  60. [60]
    H. T. Rasmussen, L. K. Goebel, H. M. McNair, J. Chromatogr.517, 549 (1990).Google Scholar
  61. [61]
    H. Nishi, N. Tsumagari, S. Terabe, Anal. Chem.61, 2434 (1989).Google Scholar
  62. [62]
    A. T. Balchunas, M. J. Sepaniak, Anal. Chem.59, 1466 (1987).Google Scholar
  63. [63]
    J. Gorse, A. T. Balchunas, D. F. Swaile, M. J. Sepaniak, J. High Resolut. Chromatogr. & Chromatogr. Commun.11, 554 (1988).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1992

Authors and Affiliations

  • Q. Wu
    • 1
  • H. A. Claessens
    • 1
  • C. A. Cramers
    • 1
  1. 1.Laboratory of Instrumental AnalysisEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations