Skip to main content
Log in

Temperature effects in capillary electrophoresis. 1: Internal capillary temperature and effect upon performance

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

In isothermal CE the migration velocity of analytes and the number of theoretical plates delivered are expected to be proportional to the field strength. In reality ohmic heating of the capillary causes distortions: the migration velocity increases more rapidly while the plate count increases less rapidly, and may even fall at high values of the field. These distortions are worse the larger the bore of the capillary and the higher the concentration of buffer. A detailed investigation of these effects using capillaries cooled by natural convection has confirmed that self heating of the capillary is indeed largely responsible. The extent of self heating has been determined by three independent methods and to a first approximation is proportional to the power dissipation in the capillary. Decreasing viscosity with temperature is responsible for the nonlinearity of the dependence of velocity upon field strength while increase in the diffusion coefficient of analytes is responsible for the poorer than expected performance at high field strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Jorgenson, K. D. Lukacs, Anal. Chem.53, 1298 (1981).

    Google Scholar 

  2. J. C. Sternberg, Advances in Chromatography2, 205 (1966).

    Google Scholar 

  3. F. E. P. Mikkers, F. M. Everaerts, Th. P. E. M. Verheggen, J Chromatogr.169, 1 (1979).

    Google Scholar 

  4. J. H. Knox, I. H. Grant, Chromatographia24, 135 (1987).

    Google Scholar 

  5. J. M. Davis, J. Chromatogr.517, 521 (1990).

    Google Scholar 

  6. J. H. Knox, Chromatographia26, 329 (1988).

    Google Scholar 

  7. S. Terabe, K. Otsuka, A. Ando, Anal. Chem.57, 834 (1985).

    Google Scholar 

  8. D. S. Burgi, K. Salomon, R.-L. Chien, J. Liq. Chrom.14, 847 (1991).

    Google Scholar 

  9. K. L. Davis, K. K. Liu, M. Lanan, M. D. Morris, Anal. Chem.65, 239 (1993).

    Google Scholar 

  10. H. Wätzig, Chromatographia33, 445 (1992).

    Google Scholar 

  11. I. H. Grant, PhD thesis, University of Edinburgh, Edinburgh, 1990.

  12. Y. Walbroehl, J. W. Jorgenson, J. Microcolumn Sep.1, 41 (1989).

    Google Scholar 

  13. Handbook of Chemistry and Physics 55th Edition, CRC Press Inc., Boca Raton, Florida, 1986–1987.

  14. G. Jones, M. Dole, J. Am. Chem. Soc.51, 2950 (1929).

    Google Scholar 

  15. S. Hjerten, Chromatogr. Rev.9, 121 (1967).

    Google Scholar 

  16. C. R. Wilke, P. Chang, AIChE1, 264 (1955).

    Google Scholar 

  17. E. G. Scheibel, Ind. Eng. Chem.46, 2007 (1954).

    Google Scholar 

  18. L. G. Longsworth, J. Am. Chem. Soc.58, 770 (1954).

    Google Scholar 

  19. J. H. Knox, K. A. McCormack, Chromatographia38, 215 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knox, J.H., McCormack, K.A. Temperature effects in capillary electrophoresis. 1: Internal capillary temperature and effect upon performance. Chromatographia 38, 207–214 (1994). https://doi.org/10.1007/BF02290338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02290338

Key Words

Navigation