Chromatographia

, Volume 38, Issue 3–4, pp 191–198 | Cite as

Chromatographic determination of the rate and extent of absorption of air pollutants by sea water

  • S. Nikolakaki
  • Ch. Vassilakos
  • N. A. Katsanos
Originals

Summary

A simple chromatographic method is developed to determine the rate constant for expulsion of an air pollutant from water or its diffusion parameter in the liquid, the rate constant for chemical reaction of the pollutant with water, its mass transfer coefficient in the liquid, and the partition coefficient between liquid water and air. From these physicochemical parameters, the absorption rate by sea water and, therefore, the depletion rate of a polluting substance from the air can be calculated, together with the equilibrium state of this absorption. The method has been applied to nitrogen dioxide being absorbed by triple-distilled water and by sea water, at various temperatures. From the temperature variation of the reaction rate constant and of the partition coefficient, the activation energy for the reaction and the differential heat of solution were determined.

Key Words

Gas chromatography Reversed-flow technique Absorption rate Air pollutants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. A. Katsanos, G. Karaiskakis, Adv. Chromatogr.24, 125 (1984).Google Scholar
  2. [2]
    N. A. Katsanos, J. Chromatogr.446, 39 (1988).Google Scholar
  3. [3]
    N. A. Katsanos, “Flow Perturbation Gas Chromatography”, Marcel Dekker, New York Basel, 1988.Google Scholar
  4. [4]
    N. A. Katsanos, G. Karaiskakis, J. Chromatogr.237, 1 (1982).Google Scholar
  5. [5]
    N. A. Katsanos, G. Karaiskakis, J. Chromatogr.254, 15 (1983).Google Scholar
  6. [6]
    G. Karaiskakis, N. A. Katsanos, A. Niotis, Chromatographia17, 310 (1983).Google Scholar
  7. [7]
    G. Karaiskakis, N. A. Katsanos, J. Phys. Chem.88, 3674 (1984).Google Scholar
  8. [8]
    N. A. Katsanos, J. Kapolos, Anal. Chem.61, 2231 (1989).Google Scholar
  9. [9]
    G. Karaiskakis, P. Agathonos, A. Niotis, N. A. Katsanos, J. Chromatogr.364, 79 (1986).Google Scholar
  10. [10]
    N. A. Katsanos, E. Dalas, J. Phys. Chem.91, 3103 (1987).Google Scholar
  11. [11]
    B. V. Stolyarov, N. A. Katsanos, P. Agathonos, J. Kapolos, J. Chromatogr.550, 181 (1991).Google Scholar
  12. [12]
    M. L. Boas, “Mathematical Methods in the Physical Sciences”, Wiley, New York, 1966, p. 660.Google Scholar
  13. [13]
    F. Obberhettinger, L. Badii, “Tables of Laplace Transforms”, Springer-Verlag, Berlin, 1973.Google Scholar
  14. [14]
    A. Niotis, N. A. Katsanos, Chromatographia34, 398 (1992).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1994

Authors and Affiliations

  • S. Nikolakaki
    • 1
  • Ch. Vassilakos
    • 1
  • N. A. Katsanos
    • 1
  1. 1.Department of Chemistry, Physical Chemistry LaboratoryUniversity of PatrasPatrasGreece

Personalised recommendations