Skip to main content
Log in

Convergence of retention for small solutes in reversed-phase liquid chromatography

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

It is shown theoretically that when the concentration of organic solvent in the mobile phase increases, or solute size decreases, log k′ values of small solutes in reversed-phase liquid chromatography (RPLC) will tend to have a minimum value called the convergence point. A theoretical model for evaluating the convergent coordinates of small solutes is presented by using a stoichiometric displacement model for retention (SMDR). The physical meaning of the coordinates of each kind of convergence are also elucidated. The convergence points have either two-dimensional coordinates with a common ordinate (the logarithm of the phase ratio of the column, log φ) or threedimensional corrdinates with two common axes: — log φ and the logarithm of the molar concentration of the pure displacing agent in mobile phase, log aD. The other axis relates to the nature of the solutes, such as carbon number of a homolog, van der Waal's surface area, hydrophobic fragment constant etc. for the latter and those and/or concentration axis for the former. The model was tested with published data and found to give a good fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Berendsen, L. de Galan, J. Chromatogr.196, 21 (1980).

    Google Scholar 

  2. B. A. Bidlingmeyer, S. N. Deming, W. P. Price, Jr., B. Sachok, M. Petrusek, J. Chromatogr.186, 419 (1980).

    Google Scholar 

  3. H. Colin, A. M. Krustulovic, M. F. Gonnord, G. Guiochon, Z. Yun, P. Jandera, Chromatographia,17, 9 (1983).

    Google Scholar 

  4. XD. Geng, Fred E. Regnier, J. Chromatogr.,296, 15 (1984).

    Google Scholar 

  5. XD. Geng, Fred E. Regnier, J. Chromatogr.332, 147 (1985).

    Google Scholar 

  6. XD. Geng, L. Guo, J. Chang, J. Chromatogr.507, 1 (1990).

    Google Scholar 

  7. XD. Geng, Guide to Theory of Separation Science, Northwest University Publisher, Xi'an, 1990.

    Google Scholar 

  8. A. Bondi, J. Phys. Chem.68, 441 (1964).

    Google Scholar 

  9. R. F. Rekker, The Hydrophobic Fragmental Constant, Elsevier Scientific Publishing Co., Amsterdam, 1977, p. 350.

    Google Scholar 

  10. N. A. Katsanos, G. Karaiskakis, P. Agathonos, J. Chromatogr.218, 409 (1981).

    Google Scholar 

  11. P. Dufek, J. Chromatogr.281, 49 (1983).

    Google Scholar 

  12. XD. Geng, Xibei Daxue Xuebao (Natural Sci. Pub.)21, 25 (1991).

    Google Scholar 

  13. N. Tanaka, E. R. Thornton, J. Am. Chem. Soc.,99, 7300 (1977).

    Google Scholar 

  14. P. J. Schoenmakers, H. A. H. Billiet, R. Tijseen, L. de Galan, J. Chromatogr.149, 519 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, X.D., Regnier, F.E. Convergence of retention for small solutes in reversed-phase liquid chromatography. Chromatographia 38, 158–162 (1994). https://doi.org/10.1007/BF02290329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02290329

Key Words

Navigation