, Volume 38, Issue 3–4, pp 137–146 | Cite as

Statistical evaluation of the validity of a method for characterizing stationary phases for reversed-phase liquid chromatography based on retention of homologous series

  • M. R. P. Breuer
  • H. A. Claessens
  • C. A. Cramers


The validity of a method for characterizing stationary phases for reversed-phase, liquid chromatography, based on the use of homologous series, has been evaluated. The method is based on a retention model which describes the dependence of the logarithm of the capacity factor on mobile phase composition and the carbon number of specific homologous series. A first-order as well as a second-order version of this model was investigated. The second-order model proved to be a significant improvement on the first-order model, even for smaller mobile-phase ranges. Nevertheless both models showed a significant lack of fit, reflecting the incompleteness of these models. Therefore, it is very questionable whether this method is suitable to describe HPLC-column characteristics like hydrophobicity and hydrophylicity.

Key Words

Column liquid chromatography Characterization of reversed phases Column hydrophobicity Column hydrophylicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Jandera, Chromatographia19, 101 (1984).Google Scholar
  2. [2]
    P. Jandera, J. Chromatogr.314, 13 (1984).Google Scholar
  3. [3]
    P. Jandera, J. Chromatogr.352, 91 (1986).Google Scholar
  4. [4]
    E. Bayer, K. Albert, J. Reiners, M. Nieder, D. Müller, J. Chromatogr.264, 197 (1983).Google Scholar
  5. [5]
    H. A. Claessens, J. W. de Haan, L. J. M. van de Ven, P. C. de Bruijn, C. A. Cramers, J. Chromatogr.436, 345 (1988).Google Scholar
  6. [6]
    D. C. Leach, M. A. Stadalius, J. C. Berus, LG-GC6, 494 (1988).Google Scholar
  7. [7]
    M. J. J. Hetem, “A Fundamental Study of Chemically Modified Silica Surfaces in Chromatography”, Ph.D. Thesis, Eindhoven, University of Technology, Eindhoven, The Netherlands (1990).Google Scholar
  8. [8]
    J. H. Park, M. D. Jang, D. S. Kim, P. W. Carr, J. Chromatogr.513, 107 (1990).Google Scholar
  9. [9]
    N. Sadlej-Sosnowska, I. Sledzinska, J. Chromatogr.595, 53 (1992).Google Scholar
  10. [10]
    D. L. Massart, B. G. M. Vandeginste, S. N. Deming, Y. Michotte, L. Kaufmann, “Chemometrics: A Textbook”, Elsevier, Amsterdam, The Netherlands (1988).Google Scholar
  11. [11]
    S. V. Deming, in “Chemometrics, Mathematics and Statistics in Chemistry”, B. R. Kowalski, Ed., NATO AST Series C, Vol. 138, Dordrecht, The Netherlands (1984).Google Scholar
  12. [12]
    M. A. Sharaf, D. L. Illman, B. R. Kowalski, “Chemometrics”, Vol. 82, John Wiley & Sons, New York (1986).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1994

Authors and Affiliations

  • M. R. P. Breuer
    • 1
  • H. A. Claessens
    • 1
  • C. A. Cramers
    • 1
  1. 1.Laboratory of Instrumental AnalysisEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations