Skip to main content

Nonmetric multidimensional scaling: A numerical method

Abstract

We describe the numerical methods required in our approach to multi-dimensional scaling. The rationale of this approach has appeared previously.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Barton, D. E. and Mallows, C. L. The randomization bases of the amalgamation of weighted means.J. roy. statist. Soc., Series B, 1961,23, 423–433.

    Google Scholar 

  2. [2]

    Bartholomew, D. J. A test of homogeneity for ordered alternatives.Biometrika, 1959,46, 36–48.

    Article  Google Scholar 

  3. [3]

    Bartholomew, D. J. A test of homogeneity of means under restricted alternatives (with discussion).J. roy. statist. Soc., Series B, 1961,23, 239–281.

    Google Scholar 

  4. [4]

    Hardy, G. H., Littlewood, J. E., and Polya, G.Inequalities. (2nd ed.) Cambridge, Eng.: Cambridge Univ. Press, 1952.

    Google Scholar 

  5. [5]

    Hildebrandt, P. and Isbitz H. Radix-exchange—An internal sorting method for digital computers.J. Assoc. computing Machinery, 1959,6, 156–163.

    Article  Google Scholar 

  6. [6]

    Kolmogorov, A. N. and Fomin, S. V.Elements of the theory of functions and functional analysis. Vol. 1.Metric and normed spaces. Translated from the first (1954) Russian Edition by Leo F. Boron, Rochester, N. Y., Graylock Press, 1957.

    Google Scholar 

  7. [7]

    Kruskal, J. Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis.Psychometrika, 1964,29, 1–28.

    Article  Google Scholar 

  8. [8]

    Miles, R. E. The complete amalgamation into blocks, by weighted means, of a finite set of real numbers.Biometrika, 1959,46, 317–327.

    Article  Google Scholar 

  9. [9]

    Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function.Psychometrika (I and II), 1962,27, 125–139, 219–246.

    Article  Google Scholar 

  10. [10]

    Spang, H. A. III. A review of minimization techniques for nonlinear functions.SIAM Rev., 1962,4, 343–365.

    Article  Google Scholar 

  11. [11]

    van Eeden, C. Maximum likelihood estimation of partially or completely ordered parameters, I.Proc. Akademie van Wetenschappen, Series A, 1957,60, 128–136.

    Google Scholar 

  12. [12]

    van Eeden, C. Note on two methods for estimating ordered parameters of probability distributions.Proc. Akademie van Wetenschappen, Series A, 1957,60, 506–512.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kruskal, J.B. Nonmetric multidimensional scaling: A numerical method. Psychometrika 29, 115–129 (1964). https://doi.org/10.1007/BF02289694

Download citation

Keywords

  • Local Minimum
  • Steep Descent
  • Configuration Space
  • Active Block
  • Nonmetric Multidimensional Scaling