Psychometrika

, Volume 30, Issue 4, pp 491–497 | Cite as

A sequence of limiting distributions of response probabilities

  • J. R. McGregor
  • J. V. Zidek
Article

Abstract

Explicit solutions are obtained for a sequence of limiting distributions of response probabilities for the two experimenter-controlled events learning model of Bush and Mosteller [2]. A generalization to thes experimenter-controlled events model is found.

Keywords

Public Policy Statistical Theory Explicit Solution Response Probability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bush, R. R. and Mosteller, F. A stochastic model with application to learning.Ann. math. Statist., 1953,24, 559–585.Google Scholar
  2. [2]
    Bush, R. R. and Mosteller, F.Stochastic models for learning, New York: Wiley, 1955.Google Scholar
  3. [3]
    Erdös, P. On a family of symmetric Bernoulli convolutions.Amer. J. Math., 1939,61, 974–976.Google Scholar
  4. [4]
    Jessen, B. and Wintner, A. Distribution functions and the Riemann zeta function.Trans. Amer. math. Soc., 1935,38, 61.Google Scholar
  5. [5]
    Karlin, S. Some random walks arising in learning models, I.Pacific J. Math., 1953,3, 725–756.Google Scholar
  6. [6]
    Kemeny, J. G. and Snell, J. L. Markov processes in learning theory.Psychometrika, 1957,22, 221–230.Google Scholar
  7. [7]
    Kershner, R. and Wintner, A. On a family of symmetric Bernoulli convolutions.Amer. J. Math., 1935,57, 546–547.Google Scholar
  8. [8]
    McGregor, J. R. and Hui, Y. Y. Limiting distributions associated with certain stochastic learning models.Ann. math. Statist., 1962,33, 1281–1285.Google Scholar
  9. [9]
    McGregor, J. R. and Zidek, J. V. Limiting distributions of response probabilities.Ann. math. Statist., 1965,36, 706–707.Google Scholar
  10. [10]
    Olds, E. G. A note on the convolution of uniform distributions.Ann. math. Statist., 1952,23, 282–285.Google Scholar
  11. [11]
    Uspensky, J. V.Introduction to mathematical probability, New York: McGraw-Hill, 1937.Google Scholar
  12. [12]
    Wintner, A. On a convergent Poisson process.Amer. J. Math., 1935,57, 835–838.Google Scholar

Copyright information

© Psychometric Society 1965

Authors and Affiliations

  • J. R. McGregor
    • 1
  • J. V. Zidek
    • 1
  1. 1.University of AlbertaCanada

Personalised recommendations