## Abstract

Statistical properties of several methods for obtaining estimates of factor loadings and procedures for estimating the number of factors are compared by means of random sampling experiments. The effect of increasing the ratio of the number of observed variables to the number of factors, and of increasing sample size, is examined. A description is given of a procedure which makes use of the Bartlett decomposition of a Wishart matrix to generate random correlation matrices.

## Keywords

Random Sampling Public Policy Factor Loading Statistical Theory Sampling Experiment
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- Anderson, T. W.
*An introduction to multivariate statistical analysis*. New York: Wiley 1958.Google Scholar - Anderson, T. W., & Rubin, H. Statistical inference in factor analysis. In J. Neyman (Ed.),
*Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume V*. Berkeley: Univer. California Press, 1956. Pp. 111–150.Google Scholar - Appel, K. Solution of eigenvalue problems with approximately known eigenvectors.
*Communications of the Association for Computing Machinery*, 1962,**5**, 381.Google Scholar - Bargmann, R. E.
*A study of independence and dependence in multivariate normal analysis*. Chapel Hill: Univer. North Carolina, Institute of Statistics, 1957. (Mimeograph Series No. 186.)Google Scholar - Bartlett, M. S. On the theory of statistical regression.
*Proceedings of the Royal Society of Edinburgh*, 1933,**53**, 260–283.Google Scholar - Bartlett, M. S. Tests of significance in factor analysis.
*British Journal of Psychology, Statistical Section*, 1950,**3**, 77–85.Google Scholar - Bartlett, M. S. A note on the multiplying factors for various approximations.
*Journal of the Royal Statistical Society*, Series B, 1954,**16**, 296–298.Google Scholar - Bechtoldt, H. P. An empirical study of the factor analysis stability hypothesis.
*Psychometrika*, 1961,**26**, 405–432.Google Scholar - Box, G. E. P., & Muller, M. E. A note on the generation of random normal deviates.
*Annals of Mathematical Statistics*, 1958,**29**, 610–611.Google Scholar - Brown, R. H. A comparison of the maximum determinant solution in factor analysis with various approximations. In R. E. Bargmann (Ed.),
*Representative ordering and selection of variables, Part B*. Blacksburg: Virginia Polytechnic Institute, 1962. Appendix B.Google Scholar - Browne, M. W. On oblique Procrustes rotation, Research Bulletin 66-8. Princeton, N. J.: Educational Testing Service, 1966.Google Scholar
- Dwyer, P. S. The contribution of an orthogonal multiple factor solution to multiple correlation.
*Psychometrika*, 1939,**4**, 163–171.Google Scholar - Dwyer, P. S. The square root method and its use in correlation and regression.
*Journal of the American Statistical Association*, 1945,**40**, 493–503.Google Scholar - Greenstadt, J. The determination of the characteristic roots of a matrix by the Jacobi method. In A. Ralston and H. S. Wilf (Eds.),
*Mathematical methods for digital computers*. New York: Wiley, 1960. Pp. 84–92.Google Scholar - Guttman, L. Multiple rectilinear prediction and the resolution into components.
*Psychometrika*, 1940,**5**, 75–99.Google Scholar - Guttman, L. Some necessary conditions for common-factor analysis.
*Psychometrika*, 1954,**19**, 149–161.Google Scholar - Guttman, L. “Best possible” systematic estimates of communalities.
*Psychometrika*, 1956,**21**, 273–285.Google Scholar - Harman, H. H.
*Modern factor analysis*. Chicago: Univer. Chicago Press, 1960.Google Scholar - Harman, H. H., & Fukuda, Y. Resolution of the Heywood case in the minres solution.
*Psychometrika*, 1966,**31**, in press.Google Scholar - Harman, H. H., & Jones, W. H. Factor analysis by minimizing residuals (minres).
*Psychometrika*, 1966,**31**, 351–368.Google Scholar - Henrysson, S. The significance of factor loadings—Lawley's test examined by artificial samples.
*British Journal of Psychology, Statistical Section*, 1950,**3**, 159–165.Google Scholar - Hotelling, H. Analysis of a complex of statistical variables into principal components.
*Journal of Educational Psychology*, 1933,**24**, 417–441, 498–520.Google Scholar - Howe, W. G.
*Some contributions to factor analysis*. Oak Ridge, Tenn.: Oak Ridge National Laboratory, 1955. (Report No. ORNL-1919.)Google Scholar - Hull, T. E., & Dobell, A. R. Random number generators.
*Society for Industrial and Applied Mathematics Review*, 1962,**4**, 230–254.Google Scholar - Jöreskog, K. G. On the statistical treatment of residuals in factor analysis.
*Psychometrika*, 1962,**27**, 335–354.Google Scholar - Jöreskog, K. G.
*Statistical estimation in factor analysis*. Stockholm: Almqvist and Wiksell, 1963.Google Scholar - Jöreskog, K. G. Some contributions to maximum likelihood factor analysis. Research Bulletin 66-41. Princeton, N.J.: Educational Testing Service, 1966.Google Scholar
- Kaiser, H. F. The application of electronic computers to factor analysis.
*Educational and Psychological Measurement*, 1960,**20**, 141–151.Google Scholar - Kaiser, H. F., & Dickman, K. Sample and population score matrices and sample correlation matrices from an arbitrary population correlation matrix.
*Psychometrika*, 1962,**27**, 179–182.Google Scholar - Kendall, M. G.
*The advanced theory of statistics, Volume II*. London: Charles Griffin, & Co., Ltd., 1946.Google Scholar - Kendall, M. G., & Stuart, A.
*The advanced theory of statistics, Volume II*. London: Charles Griffin & Co., Ltd., 1961.Google Scholar - Kshirsagar, A. M. Bartlett decomposition and Wishart distribution.
*Annals of Mathematical Statistics*, 1959,**30**, 239–241.Google Scholar - Lawley, D. N. The estimation of factor loadings by the method of maximum likelihood.
*Proceedings of the Royal Society of Edinburgh, Section A*, 1940,**60**, 64–82.Google Scholar - Lawley, D. N. Further investigations in factor estimation.
*Proceedings of the Royal Society of Edinburgh, Section A*, 1941,**61**, 176–185.Google Scholar - Lawley, D. N. Tests of significance for the latent roots of covariance and correlation matrices.
*Biometrika*, 1956,**43**, 128–136.Google Scholar - Lawley, D. N., & Swanson, Z. Tests of significance in a factor analysis of artificial data.
*British Journal of Statistical Psychology*, 1954,**7**, 75–79.Google Scholar - Linn, R. L. A Monte Carlo approach to the number of factors problem. Unpublished doctoral dissertation, Univer. of Illinois, 1965.Google Scholar
- Lord, F. M. A study of speed factors in tests and academic grades.
*Psychometrika*, 1956,**21**, 31–50.Google Scholar - Maxwell, A. E. A comparative study of some factor analytic techniques. Unpublished doctoral dissertation, Univer. of Edinburgh, 1957.Google Scholar
- Mosier, C. I. Influence of chance error on simple structure.
*Psychometrika*, 1939,**4**, 33–44. (a)Google Scholar - Mosier, C. I. Determining a simple structure when loadings for certain tests are known.
*Psychometrika*, 1939,**4**, 149–162. (b)Google Scholar - Muller, M. E. A comparison of methods for generating normal deviates on digital computers.
*Journal of the Association for Computing Machinery*, 1959,**6**, 376–383.Google Scholar - Odell, P. L., & Feiveson, A. H. A numerical procedure to generate a sample covariance matrix.
*Journal of the American Statistical Association*, 1966,**61**, 199–203.Google Scholar - Rao, C. R. Estimation and tests of significance in factor analysis.
*Psychometrika*, 1955,**20**, 93–111.Google Scholar - Saunders, D. R. Further implications of Mundy-Castle's correlations between EEG and Wechsler-Bellevue variables.
*Journal of the National Institute for Personnel Research*, Johannesburg, 1960,**8**, 91–101.Google Scholar - Sokal, R. R. A comparison of five tests for completeness of factor extraction.
*Transactions of the Kansas Academy of Science*, 1959,**62**, 141–152.Google Scholar - Taussky, O., & Todd, J. Generation and testing of pseudo random numbers. In H. A. Meycr (Ed.),
*Symposium on Monte Carlo methods*. New York: Wiley, 1956. Pp. 15–28.Google Scholar - Teichroew, D., & Sitgreaves, R. Computation of an empirical sampling distribution for the W classification statistic. In H. Solomon (Ed.),
*Studies in item analysis and prediction*. Stanford: Stanford Univer. Press, 1961, Pp. 252–275.Google Scholar - Thomson, G. H. Hotelling's method modified to give Spearman's g.
*Journal of Educational Psychology*, 1934,**25**, 366–374.Google Scholar - Thurstone, L. L.
*Multiple factor analysis*. Chicago: Univer. Chicago Press, 1947.Google Scholar - Whittle, P. On principal components and least square methods of factor analysis.
*Skandinavisk Aktuarietidskrift*, 1952,**35**, 223–239.Google Scholar - Wijsman, R. A. Applications of a certain representation of the Wishart matrix.
*Annals of Mathematical Statistics*, 1959,**30**, 597–601.Google Scholar - Wold, H. Some artificial experiments in factor analysis. In
*Uppsala Symposium on psychological factor analysis*. Uppsala: Almqvist and Wiksell, 1953. Pp. 43–64. (Nordisk Psykilogi's Monograph Series No. 3.)Google Scholar - Wrigley, C. The effect upon the communalities of changing the estimate of the number of factors.
*British Journal of Statistical Psychology*, 1959,**12**, 34–54.Google Scholar - Wrigley, C., & Neuhaus, J. O. The use of an electronic computer in principal axes factor analysis.
*Journal of Educational Psychology*, 1955,**46**, 31–41.Google Scholar - Young, G. Maximum likelihood estimation and factor analysis.
*Psychometrika*, 1941,**6**, 49–53.Google Scholar

## Copyright information

© Psychometric Society 1968