Advertisement

Psychometrika

, Volume 25, Issue 2, pp 173–182 | Cite as

An analysis of Guttman's simplex

  • Philip H. DuBois
Article

Abstract

Applying a Spearman formula for factor loadings to a variant of the diagonal method, the Guttman simplex model is factored algebraically inton/2 additive factors. The finding that communalities can be discovered such that the rank of a simplex becomesn/2 is contradictory to Guttman's contention that the minimal rank isn — 2. Certain matrices of 4 and 5 variables presented by Guttman as simplexes, can, in general, be considered 2-factor matrices, easily analyzed to simple structure without rotation. One example of 6 variables is factored by the method described to a 3-factor structure.

Keywords

Public Policy Factor Loading Statistical Theory Simple Structure Minimal Rank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ahmavaara, Y. and Markkanen, T.The unified factor model. The Finnish Foundation for Alcohol Studies Publication No. 7. Helsinki: Undenmaan Kirjapaino, 1958. Pp. 66–73.Google Scholar
  2. [2]
    Borgatta, E. F. On analyzing correlation matrices: some new emphases.Publ. Opin. Quart., 1959,22, 516–528.Google Scholar
  3. [3]
    Bonnardel, R. Les diagrammes d'intercorrelations dans le radex de Guttman.Travail hum., 1956,19, 296–313.Google Scholar
  4. [4]
    DuBois, P. H.Multivariate correlational analysis. New York: Harper, 1957.Google Scholar
  5. [5]
    Gabriel, K. R. The simplex structure of the progressive matrices test.Brit. J. statist. Psychol., 1954,7, 9–14.Google Scholar
  6. [6]
    Guttman, L. Image theory for the structure of quantitative variates.Psychometrika, 1953,18, 277–296.Google Scholar
  7. [7]
    Guttman, L. Two new approaches to factor analysis. Project Nonr-713(00), Ann. Tech. Rep., Internat. Publ. Opin. Res., and Israel Inst. Appl. Soc. Res., 1953.Google Scholar
  8. [8]
    Guttman, L. A new approach to factor analysis: the radex. In P. F. Lazarsfeld (Ed.),Mathematical thinking in the social sciences. Glencoe, Ill.: Free Press, 1954. Pp. 258–348.Google Scholar
  9. [9]
    Guttman, L. Some necessary conditions for common-factor analysis.Psychometrika, 1954,19, 149–161.Google Scholar
  10. [10]
    Guttman, L. An outline of some new methodology for social research.Publ. Opin. Quart., 1954–1955,18, 395–404.Google Scholar
  11. [11]
    Guttman, L. A generalized simplex for factor analysis.Psychometrika, 1955,20, 173–182.Google Scholar
  12. [12]
    Guttman, L. La méthode radex d'analyse factorielle. InL'analyse factorielle et ses applications. Paris: Editions du Centre National de la Recherche Scientifique, 1955. Pp. 209–219.Google Scholar
  13. [13]
    Guttman, L. Empirical verification of the radex structure of mental abilities and personality traits.Educ. psychol. Measmt, 1957,17, 391–407.Google Scholar
  14. [14]
    Guttman, L. To what extent can communalities reduce rank?Psychometrika, 1958,23, 297–308.Google Scholar
  15. [15]
    Jones, M. B. The uses of simplex theory in training research.Amer. Psychologist, 1958,13, 398. (Abstract)Google Scholar
  16. [16]
    Thurstone, L. L. Factorial studies of intelligence.Psychometric Monogr. No. 2. Chicago: Univ. Chicago Press, 1941.Google Scholar

Copyright information

© Psychometric Society 1960

Authors and Affiliations

  • Philip H. DuBois
    • 1
  1. 1.Washington UniversityUSA

Personalised recommendations