Amounts of pesticides reaching target pests: Environmental impacts and ethics

Abstract

Less than 0.1% of pesticides applied for pest control reach their target pests. Thus, more than 99.9% of pesticides used move into the environment where they adversely affect public health and beneficial biota, and contaminate soil, water, and the atmosphere of the ecosystem. Improved pesticide application technologies can improve pesticide use efficiency and protect public health and the environment.

This is a preview of subscription content, log in to check access.

References

  1. Akesson, N.B., and W.E. Yates. 1981. Precision spraying developments for pesticides (Hydraulic and spinner atomizers, aircraft applicators).1981 British Crop Protection Conference, Pests Disease (11th British Insecticide and Fungicide Conference Proceedings) 3: 907–921.

    Google Scholar 

  2. —. 1984. Physical parameters affecting aircraft spray application. InChemical and Biological Controls in Forestry, edited by W.Y. Garner and J. Harvey. Amer. Chem. Soc. Ser. 238. Washington, DC: Amer. Chem. Soc.

    Google Scholar 

  3. Argauer, R.J., H.C. Mason, C. Corley, A.H. Higgins, J.N. Sauls, and L.A. Liljedahl. 1968. Drift of water-diluted and undiluted formulations of malathion and azinphosmethyl applied by airplane.J. Econ. Ent. 61: 1015–1020.

    Google Scholar 

  4. Barry, J.W. 1993. Serial application to forests. InApplication Technology for Crop Protection, edited by G.A. Matthews and E.C. Hislop, pp. 241–274. Trowbridge: CAB International.

    Google Scholar 

  5. Bidleman, T.F., E.J. Christensen, W.N. Billings, and R. Leonard. 1990. Atmospheric transport of organochlorines in the North Atlantic Gyre.J. Mar. Res. 39: 443–469.

    Google Scholar 

  6. Bidleman, T.F., and R. Leonard. 1982. Aerial transport of pesticides over the Northern Indian Ocean and adjacent seas.Atmos. Environ. 16:1099–1107.

    Google Scholar 

  7. Byers, R.E., C.G. Lyons, and S.J. Donohue. 1985. Effect of chemical deposits from spraying adjacent rows on efficacy of peach blossom thinners.Hort. Sci. 20: 1076–1078.

    Google Scholar 

  8. Cayley, D.C., D.C. Griffiths, B.J. Pye, L.E. Smart, J.H. Stevenson, and J.H.H. Walters. 1987. Effectiveness of different spraying systems in winter wheat and biological effects on target and non-target organisms.Agric. Ecosystems Environ. 19: 211–221.

    Google Scholar 

  9. Cramer, H.H. 1967. Plant protection and world crop protection.Pflanzenschutznachrichten 20(1): 1–524.

    Google Scholar 

  10. Dale, J.E. 1980. Rope wick applicator—tool with a future.Weeds Today 11: 3–4.

    Google Scholar 

  11. Ekblad, R.B., and J.W. Barry. 1984. Technological progress in aerial application of pesticides (forest spraying).Am. Chem. Soc. Symp. Ser. 238: 79–94.

    Google Scholar 

  12. Farwell, S.D., E. Robinson, W.J. Powell, and D.F. Adams. 1976. Survey of airbourne 2,4-D in South-Central Washington.J. Air Pollution Cont. Assoc. 26: 224–230.

    Google Scholar 

  13. Giam, C.S., E. Atlas, H.S. Chan, and G.S. Neff. 1980. Phthalate esters, PCB, and DDT residues in the Gulf of Mexico atmosphere.Atmos. Environ. 14: 65–69.

    Google Scholar 

  14. Glotfelty, D.E., G.H. Williams, H.P. Freeman, and M.M. Leech. 1990. Regional atmospheric transport and deposition of pesticides in Maryland. InLong Range Transport of Pesticides, edited by D.A. Kurtz, pp. 199–221. Chelsa, MI: Lewis Publishers.

    Google Scholar 

  15. Graham, W.F., and R.A. Duce. 1982. The atmospheric transport of phosphorus to the Western North Atlantic.Atmos. Environ. 16:1089–1097.

    Google Scholar 

  16. Graham-Bryce, I.J. 1975. The future of pesticide technology: Opportunities for research.Proc. 8th Br. Insecticide Fungicide Conf. 3: 901–914.

    Google Scholar 

  17. Gregor, D.J. 1990. Deposition and accumulation of selected agricultural pesticides in Canadian Arctic snow. InLong Range Transport of Pesticides, edited by D.A. Kurtz, pp. 373–386. Chelsa, MI: Lewis Publishers.

    Google Scholar 

  18. —, and W.D. Gummer. 1989. Evidence of atmospheric transport and deposition of organochlorine pesticides and polychlorinated biphenys in Canadian arctic snow.Environ. Sci. Tech. 23: 561–565.

    Google Scholar 

  19. Grover, R. 1986. Magnitude and source of airbourne residues of herbicides in Saskatchewan. InInternational Symposium on Health and Safety in Agriculture, edited by J.A. Djosman, pp. 222–225. New York: Academic Press.

    Google Scholar 

  20. Hall, F.R. 1991. Pesticide application technology and integrated pest management (IPM). InHandbook of Pest Management in Agriculture, edited by D. Pimentel, II: 135–170. Boca Raton, FL: CRC Press.

    Google Scholar 

  21. Haverty, M.I., M. Page, P.J. Shea, J.P. Hoy, and R.W. Hall. 1983. Drift and worker exposure resulting from two methods of applying insecticides to pine bark.Bull. Environ. Contamination Toxicol. 30: 223–228.

    Google Scholar 

  22. Herzog, G.A., and R.J. Ottens. 1982. Dosage-response analysis for methyl parathion, methomyl, and permethrin on the tobacco budworm and bollworm (Lepidoptera: Noctuidae).Georgia. J. Econ. Ent. 75: 961–963.

    Google Scholar 

  23. Hokkanen, H.M.T., and D. Pimentel. 1989. New associations in biological control: theory and practice.Can. Entomol. 121: 828–840.

    Google Scholar 

  24. ICAITI. 1977.An Environmental and Economic Study of the Consequences of Pesticide Use in Central American Cotton Production. Guatemala City: Central American Research Institute for Industry, United Nations Environment Programmme.

    Google Scholar 

  25. Jensen, R.S. 1968. Pesticide drift.Hastings Law J. 19: 476–493.

    Google Scholar 

  26. Joyce, R.J.V. 1982. A critical review of the chemical pesticides in Heliothis management. InInternational Workshop on Heliothis Management, pp. 173–188. Patancheru, Andhra Pradesh, India: International Crops Research Institute for the SemiArid Tropics.

    Google Scholar 

  27. Kadir, H.K., and C.O. Knowles. 1991. Toxicological studies of the thiourea diafenthiuron in diamondback moths (Lepidoptera: Yponomeutidae), twospotted spider mites (Acari: Tetranychidae), and bulb mites (Acari: Acaridae).J. Econ. Ent. 84: 780–782.

    Google Scholar 

  28. Litovitz, T.L., B.F. Schmitz, and K.M. Bailey. 19901989 Annual report of the American Association of Poison Control Centers National Data Collection System.Amer. Jour. Emergency Med. 8: 394–442.

    Google Scholar 

  29. Lofgren, C.S., D.W. Anthony, and G.A. Mount. 1973. Size of aerosol droplets impinging on mosquitoes as determined with a scanning electron microscope.J. Econ. Ent. 66:1085–1088.

    Google Scholar 

  30. Maksymiuk, B., J. Neisess, R.A. Waite, and R.D. Orchard. 1975. Distribution of aerially applied mexacarbate in a coniferous forest.Z. Angew. Ent. 79:194–204.

    Google Scholar 

  31. Mangelsdorf, P.C. 1966. Genetic potentials for increasing yields of food crops and animals. InProspects of the World Food Supply. Symp. Proc. Natl. Acad. Sci., Washington, DC.

  32. Matthews, G.A. 1985. Application from the ground. InPesticide Applications: Principles and Practice, edited by P.T. Haskell, pp. 95–117. Oxford: Clarendon Press.

    Google Scholar 

  33. —. 1992.Pesticide Application Methods. New York: Wiley.

    Google Scholar 

  34. —, and E.C. Hislop. 1993. Application Technology for Crop Protection. Trowbridge: CAB International.

    Google Scholar 

  35. Mazariegos, F. 1985. The use of pesticides in the cultivation of cotton in Central America.Industry and Environment, July/August/September. United Nations Environment Programme, Guatemala.

  36. Metcalf, R.L., and R.L. Lampman. 1989a. Estragole analogues as attractants for corn rootworms (Coleoptera: Chrysomelidae).J. Econ. Ent. 82:123–129.

    Google Scholar 

  37. —. 1989b. Cinnamyl alcohol and analogs as attractants for corn rootworms (Coleoptera: Chrysomelidae).J. Econ. Ent. 82:1620–1625.

    Google Scholar 

  38. Miller, P.C.H. 1993. Spray drift and its measurement. InApplication Technology for Crop Protection, edited by G.A. Matthews and E.C. Hislop, pp. 101–122. Trow-bridge: CAB International.

    Google Scholar 

  39. Moore, D.G., and B.R. Loper. 1980. Soils: DDT residues in forest floors and soils of western Oregon, Sept.–Nov. 1966.Pestic. Monit. J. 14: 77–85.

    Google Scholar 

  40. Munthali, D.C., and N.E.A. Scopes. 1982. A technique for studying the biological efficiency of small droplets of pesticide solutions and a consideration of the implications.Pestic. Sci. 13: 60–62.

    Google Scholar 

  41. Pimentel, D. 1988. Herbivore population feeding pressure on plant host: feedback evolution and host conservation.Oikos 53:185–238.

    Google Scholar 

  42. —. 1990. Estimated annual world pesticide use. InFacts and Figures, edited by Rockerfeiler Foundation. New York: Rockefeller Foundation.

    Google Scholar 

  43. —, H. Acquay, M. Biltonen, P. Rice, M. Silva, J. Nelson, V. Lipner, S. Giordano, A. Horowitz, and M. D'Amore. 1992. Assessment of Environmental and economic costs of pesticide use. InThe Pesticide Question: Environment, Economics and Ethics, edited by D. Pimentel and H. Lehman, pp. 47–84. New York: Chapman and Hall.

    Google Scholar 

  44. —, and L. Levitan. 1986. Pesticides: amounts applied and amounts reaching pests.BioScience 36: 86–91.

    Google Scholar 

  45. —, L. McLaughlin, A. Zepp, B. Lakitan, T. Kraus, P. Kleinman, F. Vancini, W.J. Roach, E. Graap, W.S. Keeton, and G. Selig. 1991. Environmental and economic impacts of reducing U.S. agricultural pesticide use. InHandbook of Pest Management in Agriculture, edited by D. Pimentel, pp. 679–718. Boca Raton, FL: CRC Press.

    Google Scholar 

  46. Plimmer, J.R., and W.E. Johnson. 1991. Pesticide degradation products in the atmosphere. ACS Symposium Series.Am. Chem. Soc. Washington, DC.

    Google Scholar 

  47. Rafferty, J.E., and J.F. Bowers. 1993. Comparison of FSCBG spray model predictions with field measurements.Environ. Toxicol. Chem. 12: 465–480.

    Google Scholar 

  48. Reardon, R.C.U. 1988. The U.S. Forest Service and aerial delivery systems. InImproving On-Target Placement of Pesticides: A Conference, pp. 151–155. Bethesda, MD: Agricultural Research Institute.

    Google Scholar 

  49. Rogers, R.B. 1987. Shrouded sprayer: advantages in field application systems. InPesticide Formulations and Application Systems, edited by D.A. Hovde and G.B. Beestman, pp. 242–253. Philadelphia: ASTM.

    Google Scholar 

  50. Ross, M.A., and C.A. Lembi. 1985.Applied Weed Science. Minneapolis: Burgess Publishing Co.

    Google Scholar 

  51. Schomburg, C.J., and D.E. Glotfelty. 1991. Pesticide occurrence and distribution in fog collected near Monterey, California.Environ. Sci. Tech. 25:155–160.

    Google Scholar 

  52. Seba, D.B., and J.M. Prospero. 1971. Pesticides in the lower atmosphere of the Northern Equatorial Atlantic Ocean.Atmos. Environ. 5:1043–1050.

    Google Scholar 

  53. Shewchuk, S.R. 1982. A Study of the Atmosphere as a Dynamic Pathway for the Accumulation of Crop Applied Pesticides. SRC Technical Report. Saskatoon, Saskatchewan: Saskatchewan Research Council.

    Google Scholar 

  54. Singh, B. 1993. Pesticide residues in the environment: a case study of Punjab. InGreen Revolution Impact on Health and Environment, edited by S. Sengupta, pp. 21–28. New Delhi, India: Voluntary Health Association of India.

    Google Scholar 

  55. Spencer, W.F., and M.M. Cliath. 1990. Movement of pesticides from soil to the atmosphere. InLong Range Transport of Pesticides, edited by D.A. Kurtz, pp. 1–16. Chelsa, MI: Lewis Publishers.

    Google Scholar 

  56. Tanabe, S., H. Hidaka, and R. Tatsukawa. 1983. PCBS and chlorinated hydrocarbon pesticides in Antarctic atmosphere and hydrosphere.Chemosphere 12(2): 277–288.

    Google Scholar 

  57. Tanabe, S., and R. Tatsukawa, R. 1980. Chlorinated hydrocarbons in the North Pacific and Indian Oceans.J. Oceanogr. Soc. Japan 36: 217–226.

    Google Scholar 

  58. Teske, M.E., and J.W. Barry. 1993. Parametric sensitivity in aerial application.Trans. Amer. Soc. of Agr. Eng. 36: 27–33.

    Google Scholar 

  59. Teske, M.E., and J.F. Bowers. 1993. FSCBG: an aerial spray dispersion model for predicting the fate of released material behind aircraft.Environ. Toxicol. Chem. 12: 453–464.

    Google Scholar 

  60. USDA. 1960.Index of Plant Diseases in the United States. Washington, DC: U.S. Department of Agriculture, Crops Res. Div., ARS.

    Google Scholar 

  61. Van der Scheer, H.A.T. 1984. Testing of crop protection chemicals in fruit growing. InAnnual Report 70–77. Wilhelminadorp, Netherlands: Research Station for Fruit Growing.

    Google Scholar 

  62. Ware, G.W. 1983. Reducing pesticide application drift-losses. Tucson: University of Arizona, College of Agriculture, Cooperative Extension.

    Google Scholar 

  63. —, W.P. Cahill, B.J. Estesen, W.C. Kronland, and N.A. Buck. 1975. Pesticide drift deposit efficiency from ground sprays on cotton.J. Econ. Entomology 68: 549–550.

    Google Scholar 

  64. —, W.P. Cahill, P.D. Gerhardt, and J.W. Witt. 1970. Pesticide drift. IV. On-target deposits from aerial application of insecticides.J. Econ. Entomology 63:1982–1983.

    Google Scholar 

  65. —, B.J. Estesen, W.P. Cahill, P.D. Gerhardt, and K.R. Frost. 1969. Pesticide drift. I. High-clearance vs aerial application of sprays.J. Econ. Entomology 62: 840–843.

    Google Scholar 

  66. WHO/UNEP. 1989.Public Health Impact of Pesticides Used in Agriculture. Geneva: World Health Organization/United Nations Environment Programme.

    Google Scholar 

  67. Yates, W.E., and N.B. Akesson. 1973. Reducing pesticide chemical drift. InPesticide Formulations, edited by J.W. Van Valkenburg, pp. 275–341. New York: Marcel Dekker.

    Google Scholar 

  68. Yates, W.E., J.F. Mazariegos, Villagram, E., and A. Alicia de Zeissig. 1977. Comparison of concentrate and dilute aerial spray applications with rotary atomizers.Trans. ASAE 20: 610–616.

    Google Scholar 

  69. Zehnder, G.W., and G.K. Evanylo. 1989. Influence of extent and timing of Colorado potato beetle (Coleoptera: Chrysomelidae) defoliation on potato tuber production in Eastern Virginia.J. Econ. Entomology 82: 948–953.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pimentel, D. Amounts of pesticides reaching target pests: Environmental impacts and ethics. J Agric Environ Ethics 8, 17–29 (1995). https://doi.org/10.1007/BF02286399

Download citation

Keywords

  • pesticides
  • pests
  • targets
  • application
  • technology
  • agriculture
  • environment