Foundations of Physics

, Volume 24, Issue 10, pp 1379–1402 | Cite as

Classical field theory and analogy between Newton's and Maxwell's equations

  • Zbigniew Oziewicz
Part III. Invited Papers Dedicated to Constantin Piron


A bivertical classical field theory includes the Newtonian mechanics and Maxwell's electromagnetic field theory as the special cases. This unification allows one to recognize the formal analogies among Newtonian mechanics and Maxwell's electrodynamics.


Field Theory Electromagnetic Field Formal Analogy Newtonian Mechanic Classical Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. De Donder, Théodore,Théorie Invariantive du Calcul des Variations (Nouv. Éd. Gauthier-Villars, Paris, 1935).Google Scholar
  2. Gawedzki, Krzysztof (1972),Rep. Math. Phys. 3(4), 307–326.Google Scholar
  3. Gusiew-Czudżak, Magdalena (1993), “Formalizm multisymplektyczny w mechanice i elektrodynamice klasycznej,” Diploma Thesis, University of Wrocław, Institute of Theoretical Physics.Google Scholar
  4. Jadczyk, Arkadiusz, and Modugno, Marco (1992), “New geometrical approach to Galilei general relativistic quantum mechanics,” XXI Conference on Differential Geometry Methods in Theoretical Physics, China.Google Scholar
  5. Kijowski, Jerzy (1973), “A finite-dimensional canonical formalism in the classical field theory,”Comm. Math. Phys. 30, 99–128.Google Scholar
  6. Kijowski, Jerzy, and Tulczyjew, Włodzimierz (1979),A Symplectic Framework for Field Theories (Lectures Notes in Physics 107) (Springer, Berlin).Google Scholar
  7. Kondracki, Witold (1978), “Geometrization of the classical field theory and its application in Yang-Mills field theory,”Rep. Math. Phys. 16(1), 9–47.Google Scholar
  8. Krupkova, Olga (1992), “Higher-order mechanics,” Habilitation Thesis, University of Opava. Newton, Isaac,Principes Mathématiques de la Philosophie Naturelle, 1686 (Reprinted from French edition of 1759, by Editions Jacques Gabay, Paris, 1990).Google Scholar
  9. Oziewicz, Zbigniew, and Gruhn, Wojciech (1983). “On Jacobi's theorem from the year 1838,”Hadronic J. 6(6), 1579–1605.Google Scholar
  10. Oziewicz, Zbigniew (1992), “Calculus of variations for multiple-valued functionals,”Rep. Math. Phys. 31(1), 85–90.Google Scholar
  11. Piron, Constantin (1983), “New quantum mechanics,” inOld and New Questions in Physics, Cosmology, Philosophy and Theoretical Biology: Essays in Honour of Wolfgang Yourgrau, Alwyn van der Merwe, ed. (Plenum, New York).Google Scholar
  12. Piron, Constantin (1989),Lectures on Electrodynamics, l'Université de Genève.Google Scholar
  13. Plebański, Jerzy F. (1972), “Forms and Riemannian geometry,” Summer School on Cosmological Models at the Ettore Majorana Centre for Scientific Culture. Erice.Google Scholar
  14. Plebański, Jerzy F. (1979), “The algebra generated by Hodge's star and external differential,”J. Math. Phys. 20(7), 1415–1422.Google Scholar
  15. Thirring, Walter (1979),Classical Field Theory (Springer, New York).Google Scholar
  16. Tulczyjew, Włodzimierz (1979),Rep. Math. Phys. 16, 233.Google Scholar
  17. Weyl, Hermann,Ann. Math. 36, 607 (1935).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Zbigniew Oziewicz
    • 1
  1. 1.Facultad de Estudios Superiores Cuautitlán, Centro de Investigaciones TeoricasUniversidad Nacional Autonoma de MéxicoEstado de México

Personalised recommendations